Preferred Language
Articles
/
ijs-8212
e*-Extending Modules
...Show More Authors

     This paper aims to introduce the concepts of  -closed, -coclosed, and -extending modules as generalizations of the closed, coclossed, and extending modules,  respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Italian Journal Of Pure And Applied Mathematics
Duality of St-closed submodules and semi-extending modules
...Show More Authors

The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.

View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
An Approach to Generalized Extending Modules Via Ec-Closed Submodules
...Show More Authors

In this article, we introduce a class of modules that is analogous of generalized extending modules. First  we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that  is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules
...Show More Authors

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Ejectivity and goldie-extending modules
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Nov 11 2015
Journal Name
Thesis
St-Closed and Semi-extending Modules
...Show More Authors

Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of

... Show More
Publication Date
Sat Oct 03 2015
Journal Name
International Journal Of Advanced Scientific And Technical Research
Semi-Extending
...Show More Authors

Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.

Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Fully Principally Extending Module
...Show More Authors

In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
E-small prime sub-modules and e-small prime modules
...Show More Authors

Scopus Crossref
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On e-Small Submodules
...Show More Authors

Let M be an R-module, where R is a commutative ring with unity. A submodule N of M is called e-small (denoted by N e  M) if N + K = M, where K e  M implies K = M. We give many properties related with this type of submodules.

View Publication Preview PDF