Graceful labeling of a graph with q edges is assigned the labels for its vertices by some integers from the set such that no two vertices received the same label, where each edge is assigned the absolute value of the difference between the labels of its end vertices and the resulting edge labeling running from 1 to inclusive. An edge labeling of a graph G is called vertex anntimagic, if all vertex weights are pairwise distinct, where the vertex weight of a vertex under an edge labeling is the sum of the label of all edges incident with that vertex. In this paper, we address the problem of finding graceful antimagic labelin for split of the star graph , graph, graph, jellyfish graph , Dragon graph , kite graph ( and the double comb graph ,
Antimagic labeling of a graph with vertices and edges is assigned the labels for its edges by some integers from the set , such that no two edges received the same label, and the weights of vertices of a graph are pairwise distinct. Where the vertex-weights of a vertex under this labeling is the sum of labels of all edges incident to this vertex, in this paper, we deal with the problem of finding vertex antimagic edge labeling for some special families of graphs called strong face graphs. We prove that vertex antimagic, edge labeling for strong face ladder graph , strong face wheel graph , strong face fan graph , strong face prism graph and finally strong face friendship graph .
Consider a simple graph on vertices and edges together with a total labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say defined by for all where Also, the value is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by and is the least for which G admits edge irregular h-labeling. In this article, for some common graph families are examined. In addition, an open problem is solved affirmatively.
This paper proves the existence of face antimagic labeling for double duplication of barycentric subdivision of cycle and some other graphs
. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
The result involution graph of a finite group , denoted by is an undirected simple graph whose vertex set is the whole group and two distinct vertices are adjacent if their product is an involution element. In this paper, result involution graphs for all Mathieu groups and connectivity in the graph are studied. The diameter, radius and girth of this graph are also studied. Furthermore, several other graph properties are obtained.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreThe aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Exploratory activities carried out by oil companies in the latter half of the past
century proved the existence of voluminous reserve of oil and gas in the
southwestern area of Iraq. In view of this, it seemed more than prudent to add a new
knowledge to that currently existing about the subsurface lithostratigraphy of this
area. As a first step in fulfilling this mission, this paper will attempt to do so by
covering the time interval from the Upper Cretaceous to the Neogene. In turn, this
effort had entailed both the description of about 4707 metres of fully recovered
cores, plus the subjection of more than 4000 samples to existing petrologic analyses.
Findings worth mentioning does include the observation that wi
The main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.