This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias towards the majority class of the dataset by combining the Synthetic Minority Oversampling Technique (SMOTE) with the Bayesian Gaussian Mixture Model (BGMM) to solve the data imbalance problem. The results demonstrate that this model greatly outperforms the existing approaches, attaining identification rates in the binary classification of up to 98.80% and the multiple group classification of up to 96.49%.
With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show MoreElliptic Curve Cryptography (ECC) is one of the public key cryptosystems that works based on the algebraic models in the form of elliptic curves. Usually, in ECC to implement the encryption, the encoding of data must be carried out on the elliptic curve, which seems to be a preprocessing step. Similarly, after the decryption a post processing step must be conducted for mapping or decoding the corresponding data to the exact point on the elliptic curves. The Memory Mapping (MM) and Koblitz Encoding (KE) are the commonly used encoding models. But both encoding models have drawbacks as the MM needs more memory for processing and the KE needs more computational resources. To overcome these issues the proposed enhanced Koblitz encodi
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreIntrusion-detection systems (IDSs) aim at detecting attacks against computer systems and networks or, in general, against information systems. Most of the diseases in human body are discovered through Deoxyribonucleic Acid (DNA) investigations. In this paper, the DNA sequence is utilized for intrusion detection by proposing an approach to detect attacks in network. The proposed approach is a misuse intrusion detection that consists of three stages. First, a DNA sequence for a network traffic taken from Knowledge Discovery and Data mining (KDD Cup 99) is generated. Then, Teiresias algorithm, which is used to detect sequences in human DNA and assist researchers in decoding the human genome, is used to discover the Shortest Tandem Repeat (S
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreBeyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreLung cancer, similar to other cancer types, results from genetic changes. However, it is considered as more threatening due to the spread of the smoking habit, a major risk factor of the disease. Scientists have been collecting and analyzing the biological data for a long time, in attempts to find methods to predict cancer before it occurs. Analysis of these data requires the use of artificial intelligence algorithms and neural network approaches. In this paper, one of the deep neural networks was used, that is the enhancer Deep Belief Network (DBN), which is constructed from two Restricted Boltzmann Machines (RBM). The visible nodes for the first RBM are 13 nodes and 8 nodes in each hidden layer for the two RBMs. The enhancer DBN was tr
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More