In this work, we present new types of compact and Lindelöf spaces and some facts and results related to them. There are also types of compact and Lindelöf functions and the relationship between them has been investigated. Further, we have present some properties and results related to them.
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
In this paper, we define the bg**-connected space and study the relation between this space and other kinds of connected spaces .Also we study some types of continuous functions and study the relation among (connected space, b-connected space, bg-connected space and bg**-connected space) under these types of continuous functions.
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
The purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space. Give some results and properties and find relations between general partial metric space, partial metric spaces and D-metric spaces.
In this paper, we provide some types of - -spaces, namely, - ( )- (respectively, - ( )- , - ( )- and - ( )-) spaces for minimal structure spaces which are denoted by ( -spaces). Some properties and examples are given.
The relationships between a number of types of - -spaces and the other existing types of weaker and stronger forms of -spaces are investigated. Finally, new types of open (respectively, closed) functions of -spaces are introduced and some of their properties are studied.
This paper introduces cutpoints and separations in -connected topological spaces, which are constructed by using the union of vertices set and edges set for a connected graph, and studies the relationships between them. Furthermore, it generalizes some new concepts.
The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
In the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of qsummable
sequences lq , 0<q<1 such polynomials P is defined by P((xi)i)=(p(xi+m))i
where p:CC, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, mN. And then we prove that if the above polynomial P o