For the treatment of pathogenic bacterial infections, multidrug resistance (MDR) has become a major issue. The use of nanoparticles is a promising strategy for combating medication resistance in a variety of pathogens that cause deadly diseases. The goal of our research was to extract multidrug-resistant bacteria from wound infections and then use iron oxide nanoparticles (Fe3O4) as alternative therapeutic agents in vitro. Gram staining, morphological attributes evaluation, and biochemical testing were used to assess the microbes. The Kirby-Bauer disk diffusion method was used to test MDR-bacterial strains against several antibiotics; the majority of these isolates were resistant to ceftazidime, amoxicillin, Gentamicin, and tetracycline. the iron oxide nanoparticles were produced by the co-precipitation method and were confirmed by changing the color to dark black as well as the Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analysis that shows the shape and average size between (29.03-56.54) nm. The highest effect of iron oxide nanoparticles (Fe3O4) on the growth of Proteus.mirabilis (P.mirabilis) was as it was found that the average diameter of the inhibition zone was 22.66±1.15 mm, followed by Staphylococcus.epidermidis (S.epidermidis), Acinetobacter.baumannii (A.baumannii) with the average diameter of the inhibitory zone it was 21.66±1.52 mm, 20.33±1.53 mm respectively, and Candida.albicans (C.albicans) was 18.33±1.15 mm at 100 µgmL-1 (stock). The synthesized iron oxide nanoparticles (Fe3O4) are used to capture rapidly microbes under the magnetic field effect. The antioxidant activity DPPH of the iron oxide nanoparticles (Fe3O4) showed 29.3%, 42.2%, 58.6%, 67.4%, and 74 % at a concentration (6.25, 12.5, 25, 50, 100) µgmL-1 respectively, it demonstrated that the scavenging percentage increase with increasing the iron oxide nanoparticles (Fe3O4) concentrations.
Pseudomonas aeruginosa is considered as a developing opportunistic nosocomial pathogen and is well-known for its multidrug resistance that can be efficiently treated by a combination of antibiotics andefflux pump inhibitors (EPI). Therefore, the purpose of this study was to investigate the effect of curcumin as an EPI for the enhancement of the effectiveness of antibiotics against multidrug resistant (MDR) isolates ofP. aeruginosa. Susceptibility patterns of suspected bacteria was determined using the disc diffusion method andresistant bacteria were identified using chromogenic agar and 16S rDNA. The effectsof curcuminon the enhancement of antibiotics’s activity was evaluated usingthe broth microd
... Show MoreThis study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM im
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreA competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show MoreMetal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o
... Show MoreInvestigation of the adsorption of Chromium (VI) on Fe3O4 is carried out using batch scale experiments according to statistical design using a software program minitab17 (Box-Behnken design). Experiments were carried out as per Box-Behnken design with four input parameters such as pH (2-8), initial concentration (50–150mg/L), adsorbent dosage (0.05–0.3 g) and time of adsorption (10–60min). The better conditions were showed at pH: 2; contact time: 60 min; chromium concentration: 50 mg/L and magnetite dosage: 0.3 g for maximum Chromium (VI) removal of (98.95%) with an error of 1.08%. The three models (Freundlich, Langmuir, and Temkin) were fitted to experimental data, Langmuir isotherm has bette
... Show MoreThis study proposed to synthesize iron oxide by biological method nanoparticles. The E.coli is used to reduce Ferric chloride salt into iron particles. The formation of iron oxide nanoparticle was initially monitored by visual observation and then characterized with the help of various characterization techniques such as Uv-vis spectroscopy, (AFM) and (FTIR) analysis, which revealed that the biosynthesized iron oxide nanoparticles were spherical within size 27.7 nm. Optimization of iron oxide nanoparticle biosynthesis by E.coli was performed for parameters (temperature and pH) and the results revealed that temperature 37°C and pH 5 were the optimum conditions for iron oxide nanoparticales biosynthesis by E.coli.<
... Show MoreThe aim of present study is to investigate the antagonistic activity of Spirogyra micropunctata against multidrug resistant human pathogens. The test organisms include 3 Gram negative bacteria such as Echerichia coli, Klebsiella pneumoniae, Salmonella typhi and 2 Gram positive bacteria such as Staphylococcus aureus and Staphylococcus epidermidis. The algal cell mass was extracted in 90% Methanol and 90% Ethanol and further concentrations of 0.5, 1, 3, 5, 10, 20 mg/ml were made for each extract. Antagonistic effect was tested by using agar well-diffusion method. Methanolic crude extract showed strong antibacterial activity against all tested bacteria, while ethanolic crude extract showed moderate activity. These findings suggest the possi
... Show MoreBackground: The emergence and spread of multidrug-resistant Gram-negative bacilliin burn wound infections related to biofilm formation, which lend to challenge in treatment with conventional antibiotics andprompting to search for novel antimicrobial agents to control the infections.Silver nanoparticles (AgNPs) have wide spectrum biological properties with different mechanisms of action and less toxicity towards human cells.
Objective:The goal of this study was to evaluated the anti-bacterial and anti-biofilm activities of AgNPs alone and in combination with aminoglycoside (Amikacin) and β-lactam (Ampicillin) antibiotics against multidrug resistant Gram-negative bacilli (Pseudomonas aeruginos
... Show MoreThis study focused on the synthesis of chitosan-alginate (CH-ALg) nanoparticles by ionotropic gelation technique using sodium alginate and calcium chloride. The particle size of the synthesized nanoparticles was confirmed by atomic force microscope (AFM) and it was 61.9 nm. While the nature of functional groups present in chitosan nanoparticles was determined by FT-IR analysis. The antibacterial activity of chitosan-alginate was tested against multidrug resistance (MDR) gram- positive (Enterococcus faecalis) and gram-negative (Proteus mirabilis) bacteria. The results showed a significant effect against MDR isolates. The nanoparticles were loaded with the antibiotic doxycycline in order to improv
... Show More