Minimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during the processor's idle time, the circuit's power consumption is automatically reduced. To reduce the overall system's power consumption, maximization of sleep time and minimization of net cuts are required. To achieve these, an effective fitness function has been constructed in such a way that the balance criteria are also maintained. The approach has been tested on a set of net lists from the ISPD'98 benchmark suite, each containing 10 to 30 nodes. The experimental results are compared with two existing methods that clearly indicate the acceptability of the suggested method. The suggested strategy achieves an average reduction of 24.69% and 31.46% for net cut, whereas average extensions of 15.20% and 12.31% are observed in sleep time when compared with two existing methods. The proposed method also achieves an average power efficiency of 14.98% and 12.09% with respect to these two state-of-the-art methods.
In this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution
In this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution.
The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreCryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti
... Show MoreIn every system of security, to keep important data confidential, we need a high degree of protection. Steganography can be defined as a way of sending confidential texts through a secure medium of communications as well as protecting the information during the process of transmission. Steganography is a technology that is used to protect users' security and privacy. Communication is majorly achieved using a network through SMS, e-mail, and so on. The presented work suggested a technology of text hiding for protecting secret texts with Unicode characters. The similarities of glyphs provided invisibility and increased the hiding capacity. In conclusion, the proposed method succeeded in securing confidential data and achieving high p
... Show MoreColor image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and
LED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch