. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
Suppose that is a finite group and is a non-empty subset of such that and . Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper, we introduce the generalized Cayley graph denoted by that is a graph with vertex set consists of all column matrices which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of similar entry of and is matrix with all entries in , is the transpose of and . In this paper, we clarify some basic properties of the new graph and assign the structure of when is complete graph , complete bipartite graph and complete
... Show MoreGraceful labeling of a graph with q edges is assigned the labels for its vertices by some integers from the set such that no two vertices received the same label, where each edge is assigned the absolute value of the difference between the labels of its end vertices and the resulting edge labeling running from 1 to inclusive. An edge labeling of a graph G is called vertex anntimagic, if all vertex weights are pairwise distinct, where the vertex weight of a vertex under an edge labeling is the sum of the label of all edges incident with that vertex. In this paper, we address the problem of finding graceful antimagic labelin for split of the star graph , graph, graph, jellyfish graph , Dragon graph , ki
... Show MoreIn this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show MoreThe main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
Let be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset is a minimum neighborhood dominating set if is a dominating set and if for every holds. The minimum cardinality of the minimum neighborhood dominating set of a graph is called as minimum neighborhood dominating number and it is denoted by . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the
... Show MoreThe aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.
Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.
Moreover some theorems about these notations are proved.
With simple and undirected connected graph Φ, the Schultz and modified Schultz polynomials are defined as and , respectively, where the summation is taken over all unordered pairs of distinct vertices in V(Φ), where V(Φ) is the vertex set of Φ, degu is the degree of vertex u and d(v,u) is the ordinary distance between v and u, u≠v. In this study, the Shultz distance, modified Schultz distance, the polynomial, index, and average for both have been generalized, and this generalization has been applied to some special graphs.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreThe purpose of this paper is to extend some results concerning generalized derivations to generalized semiderivations of 3-prime near rings.
Antimagic labeling of a graph with vertices and edges is assigned the labels for its edges by some integers from the set , such that no two edges received the same label, and the weights of vertices of a graph are pairwise distinct. Where the vertex-weights of a vertex under this labeling is the sum of labels of all edges incident to this vertex, in this paper, we deal with the problem of finding vertex antimagic edge labeling for some special families of graphs called strong face graphs. We prove that vertex antimagic, edge labeling for strong face ladder graph , strong face wheel graph , strong face fan graph , strong face prism graph and finally strong face friendship graph .