The presence of White Blood Cells (WBCs) in the body of human has a great role in the protection of the body against many pathogens. The recognition of the WBC is the first important step to diagnose some particular diseases. The pathologists usually use an optical microscope to recognize WBCs, but, this process is a quite tedious, time-consuming, error prone, very slow, and expensive. In addition, it needs experts with long practice in this field. For these reasons, a computer assisted diagnostic system that helps pathologists in the process of diagnosis can be effective, easy and safe. This research is devoted to develop a system based on digital image processing methods to localize WBCs nuclei. The proposed system involved a collection of pre-processing and segmentation algorithms that are capable of allocating the nuclei in different shapes of WBCs from a microscope images. To accomplish this task, a combination of local enhancement using histogram statistics, modified k-means clustering, normalization, convert to binary image using a suitable global threshold, islands removing and holes filling based on seed filling technique, and nucleus localization algorithms were performed. The features of WBCs images in the tested dataset make the WBC nuclei extraction process representing a great challenge. The test results indicate promising ability to completely isolate the nucleus from other parts of the cell. The analysis presents a high similarity between the ground truth samples and the results obtained by the proposed method. The precision percentage of the proposed method applied on the tested dataset images is 97.21% and F-score percentage is 96.23%.
Image segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Millions of lives might be saved if stained tissues could be detected quickly. Image classification algorithms may be used to detect the shape of cancerous cells, which is crucial in determining the severity of the disease. With the rapid advancement of digital technology, digital images now play a critical role in the current day, with rapid applications in the medical and visualization fields. Tissue segmentation in whole-slide photographs is a crucial task in digital pathology, as it is necessary for fast and accurate computer-aided diagnoses. When a tissue picture is stained with eosin and hematoxylin, precise tissue segmentation is especially important for a successful diagnosis. This kind of staining aids pathologists in disti
... Show More
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show MoreData centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le
... Show MoreIn this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More