This study aims to simulate water seepage and identify areas of weakness in the foundations through the right and left sides of the proposed Makhool dam in northern Iraq, using the finite element method by advanced computer software (SEEP/ W, 2012). The earth fill dam is 3670 m long on the Tigris River. Many attempts were made to ascertain the program results on the supposed earth dam and compare the results with those of other analytical methods to verify the program. The results are comparable, showing that the program is suitable for use in the seepage analysis at the proposed Makhool dam. According to the seepage analysis, the quantity of seepage through the left side of Makhool is acceptable within permissible limits; however, the right side has a lot more than the left side because of the presence of cracks, fractures, and cavitations in the stratigraphic sequence of Fatha formation at great depths in the gypsum beds under the diaphragm. The results indicate the need to lower the diaphragm about 6 m extra in the foundation's zone to a level of 49 m.a.s.l until reaching the low permeability clay bed within the foundations' zone. This action will reduce the amount of seepage and flow velocity and avoid using more grouting during the dam life. The design limits of the piezometric head (total head) were also determined, which are supposed to be read by the monitoring devices when operating the dam at the maximum level of the reservoir and the normal operating levels.
The Makhoul Dam project proposed to be established is considered one of the strategic projects in Iraq as it works to insurance large quantity of water spare in flood seasons, increase the storage capacity of the dams in Iraq, as well as increase food security. The Makhool Dam is located on Tigris River in Salah al-Din Governorate, and 8 km south of the meeting point of the Tigris River with the Lower Zab River. The lake area is about 256 km2. In this research, a mathematical model was prepared by using HEC-RAS Two Dimension Software to analyze the velocity patterns and water depths inside makhool dam reservoir at the highest operational water elevation, based on the designs prepared
This study is directed at investigating the liquefaction potential within earth dams using numerical modelling by two-dimensional finite element analyses method for considering the Makhool earth dam on the Tigris River in Iraq. The effect of peak ground acceleration of 0.02g, 0.04g, 0.06g, and 0.08g is viewed for a shell, and the crest is presented for all scaled earthquake duration 25 s, 50 s, 75 s, and 100 s. The current study program comprises selecting a representative history point within the Makhool earth dam as a case study. Many points were allocated at different locations within the shell and crest to observe the fluctuation in the factor of safety against liquefaction. The seepage analysis results viewed graphically for the operat
... Show MoreSeepage through earth dams is one of the most popular causes for earth dam collapse due to internal granule movement and seepage transfer. In earthen dams, the core plays a vital function in decreasing seepage through the dam body and lowering the phreatic line. In this research, an alternative soil to the clay soil used in the dam core has been proposed by conducting multiple experiments to test the permeability of silty and sandy soil with different additives materials. Then the selected sandy soil model was used to represent the dam experimentally, employing a permeability device to measure the amount of water that seeps through the dam's body and to represent the seepage line. A numerical model was adopted using Geo-Studio software i
... Show MoreFinite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show MoreSeepage occurs under or inside structures or in the place, where they come into contact with the sides under the influence of pressure caused by the difference in water level in the structure U / S and D / S. This paper is designed to model seepage analysis for Kongele (an earth dam) due to its importance in providing water for agricultural projects and supporting Tourism sector. For this purpose, analysis was carried out to study seepage through the dam under various conditions. Using the finite element method by computer program (Geo-Studio) the dam was analysed in its actual design using the SEEP / W 2018 program. Several analyses were performed to study the seepage across Kongele
Five sites were chosen to the north of Babil Governorate in order to identify the limnological features and the impact of the Hindiya Dam during 2019. Site2 was located near the dam to reflect the ecological features of this site, whereas other sites, S1 was located at the upstream of the dam as a control site. Moreover, the two other sites S3 and S4 were located down the dam. The results of the study showed a close correlation between air and water temperature at all sites. Also there were significant differences in average of thirteen out of eighteen water parameters.Water temperature, total alkalinity, bicarbonate, DO, POS, TH and Mg+2 ions decreased from 22.76˚C, 203.33 mg/L,
... Show MorePhysically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t
... Show MoreFloods caused by dam failures can cause huge losses of life and property, especially in estuarine areas and valleys. In spite of all the capabilities and great improvements reached by man in the construction of dams and their structures, they will remain helpless before the powerful forces of nature, especially those related to tectonic activation, and the occurrence of earthquakes of different intensities.
The region extending from the Ilisu Dam in Turkey to the Mosul Dam in Iraq was chosen as an area for this study, and the HEC-RAS application was used to simulate the collapse of the Ilisu Dam due to a major earthquake, to know the magnitude of the risks and losses that could result