Preferred Language
Articles
/
ijs-7158
Design and implementation of a Deep Learning-based Intelligent Electronic Lock Door Entry Control System
...Show More Authors

    The Internet of Things (IoT) technology and smart systems are playing a major role in the advanced developments in the world that take place nowadays, especially in multiple privilege systems. There are many smart systems used in daily human life to serve them and facilitate their tasks, such as alarm systems that work to prevent unwanted events or face detection and recognition systems. The main idea of this work is to capture live video using a connected Pi camera, save it, and unlock the electric strike door in several ways; either automatically by displaying a live video connected via USB webcam using a deep learning algorithm of facial recognition and OpenCV or by RFID technology, as well as by detecting abnormal entrance with a ringing buzzer. In addition, this system is made in Python language and based on the Raspberry pi 4 B model that can be viewed and controlled by connecting to a screen or Wi-Fi locally or publicly over the Internet from any other smart device, such as a laptop or mobile phone, by installing the VNC application or the remote desktop connection application. The results obtained showed the efficiency and performance of this system through remote control to display, detect, and identify the persons who are authorized to permit the electronic lock/unlock door (E-Door) at a relatively low cost with the implementation of many functions in real-time.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Programmable System for Failure Modes and Effect Analysis of Steam-Power Plant Based on the Fault Tree Analysis
...Show More Authors

In this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.

   The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Advances In Mechanical Engineering
3D-shape formation of blood vessels based on computer aided design system
...Show More Authors

This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Fme Transactions
Development of automated liquid filling system based on the interactive design approach
...Show More Authors

The automatic liquid filling system is used in different applications such as production of detergents, liquid soaps, fruit juices, milk products, bottled water, etc. The automatic bottle filling system is highly expensive. Where, the common filling systems required to complex changes in hardware and software in order to modify volume of liquid. There are many important variables in the filling process such as volume of liquid, the filling time, etc. This paper presents a new approach to develop an automatic liquid filling system. The new proposed system consists of a conveyor subsystem, filling stations, and camera to detect the level of the liquid at any instant during the filling process. The camera can detect accurately the leve

... Show More
View Publication
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Wed Sep 10 2014
Journal Name
International Journal Of Computer Applications
Design and Implementation of Appliance Controller using Traditional or Smart Phone
...Show More Authors

Mobile phones are widely used nowadays, for different application such as wireless control and monitoring due to its availability and ease of use. The implemented system is based on "global system mobile (GSM)" network by using "short message service (SMS)". The design mainly contains a GSM modem and interfacing unit circuit with microcontrollers. This system could control up to eight different electrical devices such as light, Air conditioner, washing machine and many more applications which needed in daily life in different area (House, Office, or factory, etc.). The control is done by sending a specific SMS messages from traditional or smart phone. The controlling devices are restricted to a pre-defined phone number and are set in the so

... Show More
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
A Computerized Integrated System for Geodetic Networks Design
...Show More Authors

This research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Development of a Blueprint Impact System of the risks on construction projects Implementation
...Show More Authors

In Production and Operations Management the specialists  have  tried to develop a strategy to counter the risks arising from the activities of the organization and of waste of various types and therefore the risk management in the contemporary framework represents a phenomenon of new quality, and can not be this phenomenon to take practical dimensions, but the development of culture of the organization towards the risks and deal with all aspects and paint ways to address them within an integrated program, and requires new skills and systems provide accurate information capable of coordination between the various parties within the organization.

     The research aims to develop a blu

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Wed Nov 06 2019
Journal Name
College Of Physical Education And Sports Science
(M.H) electronic system for goalkeepers
...Show More Authors

Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning
...Show More Authors

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref