Preferred Language
Articles
/
ijs-712
Secondary Emission Effect on SomePre-Equilibrium Nuclear Reactions Spectra at Different Energies
...Show More Authors

The nuclear pre-equilibrium emission spectra have been studied and calculated using the exciton model with different reactions and incident energiesfor the target nuclei: . The secondary emissioncomponent has been inserted to the final emission spectrum and its effectshave been studied for only reactions with primary nucleons emission because the restrictions introduced by primary clusters emission reactions. It revealed a big contributioninenhancing the calculated energy spectra atincident energies more than

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Pre-equilibrium and Equilibrium Energy Emission Spectrum of Nucleons and Light Nuclei Induce Nuclear Reactions on 63Cu Nuclei
...Show More Authors

The differential cross sections of the pre - equilibrium stage are calculated at different energies using the Kalbach Systematic approach in Exciton model with Feshbach, Kerman and Koonin (FKK) statistical theory of Multistep Compound and direct reactions. In this work, the emission rate of light nuclei with emission energy in the centre of mass system in the isospin mixed case is considered in calculations to predict the cross-sections at the pre-equilibrium and equilibrium stages. The nucleons and light nuclei (2D and 3T) have been used as a projectile at the target 63Cu nuclei and at different incident energies (4MeV, 14 MeV and 14.8MeV). The comparisons between the present calculated results with other, theoretical and experimental w

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Evaluating the phenomenological approach models in predicting the Neutron Induced Deuteron Emission Spectra from Different reactions
...Show More Authors

A neutron induced deuteron emission spectra and double differential cross-sections (DDX), in 27Al (n, D) 26Mg, 51V (n, D)50Ti , 54Fe ( n, D)53Mn and 63Cu (n, D) 62Ni reactions, have been investigated using the phenomenological approach model of Kalbach. The pre-equilibrium stage of the compound nucleus formation is considered the main pivot in the discription of cross-section, while the equilibrium (pick up or knock out ) process is analyzed in the framework of the statistical theory of cluster reactions, Feshbach, Kerman, and Koonin (FKK) model. To constrain the applicable parameterization as much as possible and to assess the predictive power of these models, the calculated results have been compared with the experimental data and othe

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
The pre-equilibrium and equilibrium double differential cross sections for the nucleons and light nuclei induce nuclear reactions on 27Al nuclei
...Show More Authors

The pre - equilibrium and equilibrium double differential cross
sections are calculated at different energies using Kalbach Systematic
approach in terms of Exciton model with Feshbach, Kerman and
Koonin (FKK) statistical theory. The angular distribution of nucleons
and light nuclei on 27Al target nuclei, at emission energy in the center
of mass system, are considered, using the Multistep Compound
(MSC) and Multistep Direct (MSD) reactions. The two-component
exciton model with different corrections have been implemented in
calculating the particle-hole state density towards calculating the
transition rates of the possible reactions and follow up the calculation
the differential cross-sections, that include MS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Partial Level Densities for Neutron Induced Pre-equilibrium Nuclear Reactions
...Show More Authors

The state and partial level densities were calculated using the corresponding formulas that are obtained in the frame work of the exciton model with equidistant spacing model (ESM) and non-ESM (NESM). Different corrections have been considered, which are obtained from other nuclear principles or models. These corrections are Pauli Exclusion Principle, surface effect, pairing effect, back shift due to shell effect and bound state effect . They are combined together in a composite formula with the intention to reach the final formula. One-component system at energies less than 100 MeV and mass number range (50-200) is assumed in the present work. It was found that Williams, plus spin formula is the most effective approach to the composite

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Emission Spectra for the Isotopic Molecule Lithium Hydride
...Show More Authors

A study of the emission spectra of isotopic for electronic states has been carried out. The energies of the vibration levels ( =0,1,..25) and the values of spectral lines R(J) and P(J) versus rotational quantum number (J=0,1..25). It was found that were an increase of the value of R(J) with the increase of the values of J was found while the value of P(J) decreases with decreasing of the values of J . It was found that corresponding to R(J) and P(J) the spectral line R(J) increases when the values of m increased.

View Publication Preview PDF
Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
The Effect of Grain Size-Secondary Electron Emission on Grain Growth in Dusty Plasma
...Show More Authors

The calculation of the charge on an isolated dust grain immersed in plasma with different grain sizes is a challenging one, especially under moderately high plasma temperature when secondary electron emission significant. The discrete charging model is used to calculate the charges of dust grain in dusty plasma. In this model, we included the effect of grain size dependence on secondary electron emission. The results show that the secondary electron emission from the glass dust grains due to energetic electron (40eV) can lead to the small grain to be slightly more positive than the large grain. Under these conditions, the smaller and larger grains would be attracted rather than repelled, which possibly lead to enhanced coagulation rates.

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Iraqi Journal Of Physics
Evaluation of Resonance Strengths and Reaction Rates of 22Ne (p, gamma) 23Na Nuclear Reaction at Thermonuclear Energies
...Show More Authors

At thermal energies near stellar conditions, nuclear reactions are sensitive to resonance strengths of the nuclear reaction cross-section. In this paper, the resonance strengths of  nuclear reaction were evaluated numerically by means of nuclear reaction rate calculations using a written Matlab code, at the energies of interest in stellar nuclear reactions. The results were compared with standard reaction before and after application of a statistical analyses, to select the best parameters that made theoretical results as close as possible to the standard values. Fitting was made for different temperature ranges up to 10 GK, 0.6 GK and 0.25 GK. The evaluated results showed that as the temperature range becomes narrower, more error is ad

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 16 2019
Journal Name
Canadian Journal Of Physics
Influence of the variation in the Hubbard parameter (U) on activation energies of CeO2-catalysed reactions
...Show More Authors

Accurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th

... Show More
Publication Date
Wed Oct 28 2015
Journal Name
International Journal Of Medicine And Pharmaceutical Sciences (ijmps
THE STUDY OF NUCLEAR REACTIONS FOR PRODUCTION OF ISOTOPES FOR MEDICAL RADIOACTIVE ARSENIC BY USING DIFFERENT CROSS SECTIONS
...Show More Authors

This presented study is to make comparison of cross sections to produce 71As, 72As, 73As and 74As via different reactions with particle incident energy up to 60 MeV of alpha 100 MeV of proton as a part of systematic studies on particle-induced activations on enriched Ge, Ga, Rb and Nb targets and neutron capture. Theoretical calculation of production yield, and suggestion of optimum reaction to produce 71As, 72As, 73As and 74As, based on the main published and approved experimental results of excitation functions were calculated.

Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Synthesis and Characterization of α-Fe2O3 Nanoparticles Prepared by PLD at Different Laser Energies
...Show More Authors

In this paper, ferric oxide nanoparticles) Fe2O3 NPs( were synthesized directly on a quartz substrate in vacuum by pulse laser deposition technique using Nd:YAG laser at different energies (171, 201,363 mJ/pulse). The slides were then heated to 700o C for 1 hour. The structural, optical, morphological, and electrical properties were studied. The optical properties indicated that the prepared thin films have an energy gap ranging from 2.28 to 2.04 eV. The XRD results showed no lattice impurities for other iron oxide phases, confirming that all particles were transformed into the α-Fe2O3 phase during the heating process. The AFM results indicated the dependence of nanoparticles size o

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref