هدفت هذه الد ا رسة لاختبار تاثير بعض ظروف النمو على الفاعلية التثبيطية لبكتيريا Lactobacillus delbrueckii و L.fermentum على نمو بكتيريا E.coli وقد دلت نتائج د ا رسة اختبار الفاعلية التثبيطية
للعزلتان البكتيريتان Lactobacillus delbrueckii L.fermentum , ضد العزلة البكترية E.coli المستخدمة في هذه الد ا رسة عند الت ا ركيز المختلفة 100,90,70,50) ( % بان عالق العزلتان البكتيريتان
Lactobacillus delbrueckii و L.fermentum عند التركيز % 100 اعطى اعلى فاعلية تثبيطية ضد
بكتريا E.coli حيث بلغ معدل قطر منطقة التثبيط 27 ملم , بينما بلغ معدل قطر منطقة التثبيط 17 ملم عند
التركيز %50 كفاعلية تثبيطية لعالق العزلتان البكتيريتان ضد بكتريا E.coli عند استخدام طريقة الحفر, في
حين ان ا رشح العزلتان البكتيريتان Lactobacillus delbrueckii و L.fermentum عند التركيز %100
اعطى منطقة تثبيط قطرها 23 ملم . عند د ا رسة ثباتية البكتريوسين تجاه التغاير في قيم الاس الهيدروجيني ,
اظهرت النتائج ثباتية البكتريوسين المنتج عند قيم الاس الهايدروجيني الحامضي من خلال قطر منطقة التثبيط
لبكتريا E.coli 22 ملم في حين انها بلغت 17 ملم عند قيم الاس الهايدروجيني القاعدي . في حين ان نتائج
اختبار تاثير كل من الملحين NaCl و KCl عند التركيزين 1 و 5 % في فاعلية البكتريوسين بينت ان
فاعليته التثبيطية ضد بكتيريا E.coli كانت اعلى عند الت ا ركيز الملحية الواطئة 1% مقارنة بفعله عند الت ا ركيز
الملحية العالية % 5 من خلال نتائج اقطار مناطق التثبيط والتي كانت 16 و 18 ملم لكل من الملحين Nacl و Kcl عند التركيز 1 % على التوالي في حين انها انخفضت الى 14 و 15 ملم لكل من الملحين Nacl و
Kcl عند التركيز % 5 على التوالي . كما بينت النتائج ثباتية الفعل التثبيطي للبكتريوسين المنتج من قبل
بكتريا Lactobacillus عند درجة الح ا ررة 37 º م في حين انه انعدم عند درجة الح ا ررة 25
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
Breast cancer is the most prevalent malignancy among women worldwide, in Iraq it ranks the first among the population and the leading cause of cancer related female mortality. This study is designed to investigate the correlations between serum and tissue markers in order to clarify their role in progression or regression breast cancer. Tumor Markers are groups of substances, mainly proteins, produced from cancer cell or from other cells in the body in response to tumor. The study was carried out from April 2018 to April 2019 with total number of 60 breast cancer women. The blood samples were collected from breast cancer women in postoperative and pretherapeutic who attended teaching oncology hospital of the medical city in Baghdad and
... Show MoreDiamond-like carbon, amorphous hydrogenated films forms of carbon, were pretreated from cyclohexane (C6H12) liquid using plasma jet which operates with alternating voltage 7.5kv and frequency 28kHz. The plasma Separates molecules of cyclohexane and Transform it into carbon nanoparticles. The effect of argon flow rate (0.5, 1 and 1.5 L/min) on the optical and chemical bonding properties of the films were investigated. These films were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD) Raman spectroscopy and scanning electron microscopy (SEM). The main absorption appears around 296, 299 and 309nm at the three flow rate of argon gas. The value of the optical energy gap is 3.37, 3.55 and 3.68 eV at a different flow rate o
... Show MoreOil price forecasting has captured the attention of both researchers and academics because of the unique characteristics of crude oil prices and how they have a big impact on a lot of different parts of the economic value of the product. As a result, most academics use a lot of different ways to predict the future. On the other hand, researchers have a hard time because crude oil prices are very unpredictable and can be affected by many different things. This study uses support vector regression (SVR) with technical indicators as a feature to improve the prediction of the monthly West Texas Intermediate (WTI) price of crude oil. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) measur
... Show More