Preferred Language
Articles
/
ijs-7064
Calculation the Magnetic Dipole Moments of Some Fluorine Nuclei

The magnetic dipole moments and the root mean square radius have been calculated some the Fluorine (A= 17, 19, 20, 21) isotopes based on the sd-shell model using universal sd-shell interaction A (USDA). All studied isotopes are composed of 16O nucleus that is considered as an inert core and the other valence particles are moving over the sd-shell model space within 1d5/2, 2s1/2 and 1d3/2 orbits. The configuration of mixing shell model with limiting number of orbitals in the model space outside the inert core fail to reproduce the measured magnetic dipole moments. Therefore, and for the purpose of enhancing the calculations, the discarded space has been included the core polarization effect through the effective g-factors. The harmonic oscillator potential is used to generate the single particle matrix elements, where the value of the size parameter b is adjusted to get the experimental root mean square of matter radii for each nucleus calculated.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Calculation of the Magnetic Dipole and Electric Quadrupole Moments of some Sodium Isotopes using Shell Model with Skyrme Interaction

         In the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2,

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Nov 01 2013
Journal Name
Isesco Journal Of Science And Technology
Effect of Solvents on the Dipole Moments and Fluorescence Quantum Yield of Rhodamine Dyes

Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and

... Show More
Preview PDF
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Inelastic transverse magnetic dipole electron scattering form factors in 48Ca (restricted optimum configurations)

Inelastic transverse magnetic dipole electron scattering form
factors in 48Ca have been investigated through nuclear shell model
in an excited state energy Ex= 10.23 MeV which is so called
"mystery case" with different optional choices like effective
interaction, restricted occupation and core polarization interaction.
40Ca as an inert core will be adopted and four orbits with eight
particles distributed mainly in 2p1f model space and in some extend
restricted to make sure about the major accuse about this type of
transition. Theoretical results have been constituted mainly with
experimental data and compared with some important theoretical
results of the same transition.

Crossref
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
The calculation of the charge density distributions of the 1f-2p shell nuclei using the occupation numbers of the states

The charge density distributions (CDD) and the elastic electron scattering form factors, F(q), of the ground state for some 1f-2p shell nuclei, such as 74Ge, 76Ge, 78Se and 80Se nuclei have been calculated based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. It is found that introducing additional parameters, namely β1 and β2 which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to a remarkable agreement between the calculated and experimental results of the charge density distributions

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
Calculation of the Longitudinal Electron Scattering Form Factors for the 2s-1d Shell Nuclei

Inelastic longitudinal electron scattering form factors have been calculated for isoscaler transition
T = 0 of the (0+ ®2+ ) and (0+ ®4+ ) transitions for the 20Ne ,24Mg and 28Si nuclei. Model
space wave function defined by the orbits 1d5 2 ,2s1 2 and 1d3 2 can not give reasonable result for
the form factor. The core-polarization effects are evaluated by adopting the shape of the Tassie-
Model, together with the calculated ground Charge Density Distribution CDD for the low mass 2s-1d
shell nuclei using the occupation number of the states where the sub-shell 2s is included with an
occupation number of protons (a ) .

View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Calculation of the longitudinal electron scattering form factors for the 2s-1d shell nuclei

An Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
The study of nuclear structure for some nuclei

 An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40  A  56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 18 2021
Journal Name
Iraqi Journal Of Physics
The study of nuclear structure for some nuclei

An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40  A  56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tassie mod

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
The Nuclear Structure for Exotic Neutron-Rich of 42, 43, 45,47K Nuclei

In this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated t

... Show More
Crossref
View Publication Preview PDF