The digital multimedia systems become standard at this time because of their extremely sensory activity effects and also the advanced development in its corresponding technology. Recently, biological techniques applied to several varieties of applications such as authentication protocols, organic chemistry, and cryptography. Deoxyribonucleic Acid (DNA) is a tool to hide the key information in multimedia platforms.
In this paper, an embedding algorithm is introduced; first, the image is divided into equally sized blocks, these blocks checked for a small amount color in all the separated blocks. The selected blocks are used to localize the necessary image information. In the second stage, a comparison is between the initial image pixel and the watermark bit pixel is done to select the key that represents the location of a specific bit location that exist in all channels with its most dominant. If the compared bits are equal then (0) is added in least significant bit of least dominant color channel otherwise (1) is added. In the last stage, a regeneration process for the key is done. DNA based cryptographic algorithm has been suggested to develop secures image encryption techniques. This algorithm gives a good results, the MSE was (0.0007) for one test also the key generation method is successful.
The source and channel coding for wireless data transmission can reduce
distortion, complexity and delay in multimedia services. In this paper, a joint sourcechannel
coding is proposed for orthogonal frequency division multiplexing -
interleave division multiple access (OFDM-IDMA) systems to transmit the
compressed images over noisy channels. OFDM-IDMA combines advantages of
both OFDM and IDMA, where OFDM removes inter symbol interference (ISI)
problems and IDMA removes multiple access interference (MAI). Convolutional
coding is used as a channel coding, while the hybrid compression method is used as
a source coding scheme. The hybrid compression scheme is based on wavelet
transform, bit plane slicing, polynomi
In this paper, an algorithm through which we can embed more data than the
regular methods under spatial domain is introduced. We compressed the secret data
using Huffman coding and then this compressed data is embedded using laplacian
sharpening method.
We used Laplace filters to determine the effective hiding places, then based on
threshold value we found the places with the highest values acquired from these filters
for embedding the watermark. In this work our aim is increasing the capacity of
information which is to be embedded by using Huffman code and at the same time
increasing the security of the algorithm by hiding data in the places that have highest
values of edges and less noticeable.
The perform
The past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio
... Show MoreIn this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.
Most of today’s techniques encrypt all of the image data, which consumes a tremendous amount of time and computational payload. This work introduces a selective image encryption technique that encrypts predetermined bulks of the original image data in order to reduce the encryption/decryption time and the
computational complexity of processing the huge image data. This technique is applying a compression algorithm based on Discrete Cosine Transform (DCT). Two approaches are implemented based on color space conversion as a preprocessing for the compression phases YCbCr and RGB, where the resultant compressed sequence is selectively encrypted using randomly generated combined secret key.
The results showed a significant reduct
In this study, an efficient compression system is introduced, it is based on using wavelet transform and two types of 3Dimension (3D) surface representations (i.e., Cubic Bezier Interpolation (CBI)) and 1 st order polynomial approximation. Each one is applied on different scales of the image; CBI is applied on the wide area of the image in order to prune the image components that show large scale variation, while the 1 st order polynomial is applied on the small area of residue component (i.e., after subtracting the cubic Bezier from the image) in order to prune the local smoothing components and getting better compression gain. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, t
... Show More Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
This paper deals with reducing the size of image, namely reducing the number of bits required in representing the