When images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensional matrix to a one-dimensional vector matrix using the Vector Quantization (VQ) algorithm. The data is divided into training and testing. Then it is fed into 23 layers of deep neural networks (DNN) that classify satellite images. The result is 2,145,020 parameters, and the evaluation of performance measures was accuracy = 100%, loopback = 100%, and the result F1 = 100 %.
Tourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreIn this paper we present the theoretical foundation of forward error analysis of numerical algorithms under;• Approximations in "built-in" functions.• Rounding errors in arithmetic floating-point operations.• Perturbations of data.The error analysis is based on linearization method. The fundamental tools of the forward error analysis are system of linear absolute and relative a prior and a posteriori error equations and associated condition numbers constituting optimal of possible cumulative round – off errors. The condition numbers enable simple general, quantitative bounds definitions of numerical stability. The theoretical results have been applied a Gaussian elimination, and have proved to be very effective means of both a prior
... Show MoreAutomatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t
... Show MoreDue to the increased of information existing on the World Wide Web (WWW), the subject of how to extract new and useful knowledge from the log file has gained big interest among researchers in data mining and knowledge discovery topics.
Web miming, which is a subset of data mining divided into three particular ways, web content mining, web structure mining, web usage mining. This paper is interested in server log file, which is belonging to the third category (web usage mining). This file will be analyzed according to the suggested algorithm to extract the behavior of the user. Knowing the behavior is coming from knowing the complete path which is taken from the specific user.
Extracting these types of knowledge required many of KDD
Background: Chronic obstructive pulmonary disease causes permanent morbidity, premature mortality and great burden to the healthcare system. Smoking is it's most common risk factor and Spirometry is for diagnosing COPD and monitoring its progression.
Objectives: Early detection of chronic obstructive pulmonary disease in symptomatic smokers’ ≥ 40years by spirometry.
Methods: A cross sectional study on all symptomatic smokers aged ≥ 40 years attending ten PHCCs in Baghdad Alkarkh and Alrisafa. Those whose FEV1/FVC was <70% on spirometry; after giving bronchodilator, were considered COPD +ve.
Results: Overall, airway obstruction was seen in
... Show MoreWater saturation is the most significant characteristic for reservoir characterization in order to assess oil reserves; this paper reviewed the concepts and applications of both classic and new approaches to determine water saturation. so, this work guides the reader to realize and distinguish between various strategies to obtain an appropriate water saturation value from electrical logging in both resistivity and dielectric has been studied, and the most well-known models in clean and shaly formation have been demonstrated. The Nuclear Magnetic Resonance in conventional and nonconventional reservoirs has been reviewed and understood as the major feature of this approach to estimate Water Saturation based on T2 distribution. Artific
... Show MoreSolving problems via artificial intelligence techniques has widely prevailed in different aspects. Implementing artificial intelligence optimization algorithms for NP-hard problems is still challenging. In this manuscript, we work on implementing the Naked Mole-Rat Algorithm (NMRA) to solve the n-queens problems and overcome the challenge of applying NMRA to a discrete space set. An improvement of NMRA is applied using the aspect of local search in the Variable Neighborhood Search algorithm (VNS) with 2-opt and 3-opt. Introducing the Naked Mole Rat algorithm based on variable neighborhood search (NMRAVNS) to solve N-queens problems with different sizes. Finding the best solution or set of solutions within a plausible amount of t
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreComputational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show MoreCloud computing is the new technological trend for future generations. It represents a new way to use IT resources more efficiently. Cloud computing is one of the most technological models for developing and exploiting infrastructure resources in the world. Under the cloud, the user no longer needs to look for major financing to purchase infrastructure equipment as companies, especially small and medium-sized ones, can get the equipment as a service, rather than buying it as a product. The idea of cloud computing dates back to the sixties of the last century, but this idea did not come into actual application until the beginning of the third millennium, at the hands of technology companies such as Apple, Hp, IBM, which had
... Show More