Preferred Language
Articles
/
ijs-6754
Satellite Image Classification using Spectral Signature and Deep Learning
...Show More Authors

    When images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensional matrix to a one-dimensional vector matrix using the Vector Quantization (VQ) algorithm. The data is divided into training and testing. Then it is fed into 23 layers of deep neural networks (DNN) that classify satellite images. The result is 2,145,020 parameters, and the evaluation of performance measures was accuracy = 100%, loopback = 100%, and the result F1 = 100 %.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 28 2019
Journal Name
Iraqi Journal Of Science
Preview on the demarcation process of the maritime border between Iraq and Kuwait by using GIS and satellite image (landsat8)
...Show More Authors

The demarcation in general and maritime borders in particular is an important process between any two states to define their respective regional Borders and their economic resources. This research is focused on the way in which demarcation took place between Iraq's maritime borders on the one hand and the Kuwaiti side on the other. Through satellite technology (Landsat8) and GIS can be identified the area and how the demarcation was done. The most important in addition, positive points of the demarcation have been explained. It was given a full description of the importance of the economic zone and Highlighting Iraq's most important marine facilities. More than one map of Iraq can be integrated and redesigned by GIS. This work has been t

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
A Novel Approach to Improving Brain Image Classification Using Mutual Information-Accelerated Singular Value Decomposition
...Show More Authors

View Publication
Scopus (38)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
A survey of deepfakes in terms of deep learning and multimedia forensics
...Show More Authors

Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Heart Disease Classification–Based on the Best Machine Learning Model
...Show More Authors

    In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne

... Show More
View Publication Preview PDF
Scopus (9)
Scopus Crossref
Publication Date
Mon Mar 14 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Mathematical simulation of memristive for classification in machine learning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (42)
Crossref (32)
Scopus Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref