In this paper, we introduce the notation of the soft bornological group to solve the problem of boundedness for the soft group. We combine soft set theory with bornology space to produce a new structure which is called soft bornological group. So that both the product and inverse maps are soft bounded. As well as, we study the actions of the soft bornological group on the soft bornological sets. The aim soft bornological set is to partition into orbital classes by acting soft bornological group on the soft bornological set. In addition, we explain the centralizer, normalizer, and stabilizer in details. The main important results are to prove that the product of soft bornological groups is soft bornological group and the action for different elements are the same actions.
The set of all (n×n) non-singular matrices over the field F. And this set forms a group under the operation of matrix multiplication. This group is called the general linear group of dimension over the field F, denoted by . The determinant of these matrices is a homomorphism from into F* and the kernel of this homomorphism was the special linear group and denoted by Thus is the subgroup of which contains all matrices of determinant one.
The rationally valued characters of the rational representations are written as a linear combination of the induced characters for the groups discussed in this paper. We find the Artin indicator for this group after studying the rationally valued characters of the rational
... Show MoreThe set of all (n×n) non-singular matrices over the field F this set forms a group under the operation of matrix multiplication. This group is called the general linear group of dimension over the field F, denoted by . The determinant of these matrices is a homomorphism from into F* and the kernel of this homomorphism was the special linear group and denoted by Thus is the subgroup of which contains all matrices of determinant one.
The rational valued characters of the rational representations written as a linear combination of the induced characters for the groups discuss in this paper and find the Artin indicator for this group after study the rational valued characters of the rational representations and the induce
... Show MoreThe concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
For a nonempty subset X of a group G and a positive integer m , the product of X , denoted by Xm ,is the set Xm = That is , Xm is the subset of G formed by considering all possible ordered products of m elements form X. In the symmetric group Sn, the class Cn (n odd positive integer) split into two conjugacy classes in An denoted Cn+ and Cn- . C+ and C- were used for these two parts of Cn. This work we prove that for some odd n ,the class C of 5- cycle in Sn has the property that = An n 7 and C+ has the property that each element of C+ is conjugate to its inverse, the square of each element of it is the element of C-, these results were used to prove that C+ C- = An exceptio
... Show MoreThe study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.
Background: Among different air pollutants, cigarette smoke contains toxic chemicals, mutagenic and carcinogenic compounds, which can adversely affect male fertility. In this study, semen parameters and reproductive hormonal concentrations of subfertile smokers were compared with subfertile non-smokers.
Objectives: evaluation of the effect of cigarette smoking on male fertility by evaluating several semen parameters as well as some reproductive hormones in a group of smoker and non smokersubfertile Iraqi subjects.
Patients and Methods: At the male infertility clinic of Al-yarmuk teaching hospital, Almustanseria medical college, Baghdad, Iraq from the 1st of October 2010 to the end of June 2011, 88 men (49 non-smokers, and 39 smoker
Let h is Γ−(λ,δ) – derivation on prime Γ−near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ−hom. or acts like anti–Γ−hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.
This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.