Preferred Language
Articles
/
ijs-657
Fuzzy Survival and Hazard Functions Estimation for Rayleigh distribution

In this article, performing and deriving the probability density function for Rayleigh distribution by using maximum likelihood estimator method and moment estimator method, then crating the crisp survival function and crisp hazard function to find the interval estimation for scale parameter by using a linear trapezoidal membership function. A new proposed procedure used to find the fuzzy numbers for the parameter by utilizing (     to find a fuzzy numbers for scale parameter of Rayleigh distribution. applying two algorithms by using ranking functions to make the fuzzy numbers as crisp numbers. Then computed the survival functions and hazard functions by utilizing the real data application.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Estimation of Survival and Hazard Rate Functions of Exponential Rayleigh Distribution

In this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.

Crossref
View Publication Preview PDF
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Non Bayesian estimation for survival and hazard function of weighted Rayleigh distribution (b)

In this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.

Scopus (5)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Estimation of Survival Function for Rayleigh Distribution by Ranking function:-

In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using   is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.

Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate for Survival and Related Functions of Weighted Rayleigh Distribution.

     In this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function,   survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mea

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Survival estimation for singly type one censored sample based on generalized Rayleigh distribution

This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.

Crossref
View Publication Preview PDF
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Comparison Different Estimation Method for Reliability Function of Rayleigh Distribution Based On Fuzzy Lifetime Data

    In this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as  the fuzzy reliability at the estimation  of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Apr 08 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayes estimators for reliability and hazard function of Rayleigh-Logarithmic (RL) distribution with application

In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application

Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
comparing three estimators of fuzzy reliability for one scale parameter rayleigh distribution

Statistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu

... Show More
Scopus (1)
Scopus