In recent years, the iris biometric occupies a wide interesting when talking about
biometric based systems, because it is one of the most accurate biometrics to prove
users identities, thus it is providing high security for concerned systems. This
research article is showing up an efficient method to detect the outer boundary of
the iris, using a new form of leading edge detection technique. This technique is
very useful to isolate two regions that have convergent intensity levels in gray scale
images, which represents the main issue of iris isolation, because it is difficult to
find the border that can separate between the lighter gray background (sclera) and
light gray foreground (iris texture). The proposed method tried to find iris radius by
seeking in the two iris halves (right and left) circularly, in term of certain angles
interval for each half, to avoid the existence of the upper and lower eyelids and
eyelashes. After the two radiuses (i.e. for each half) had been determined, the iris
final iris radius would be evaluated to the minimum value of them. This method
tested on all samples of CASIAv4-Interval dataset, which consist of 2639 samples,
captured from 249 individuals, and distributed on 395 classes, the accuracy of the
testing was 100% for outer boundary detection.
Iris detection is considered as challenging image processing task. In this study efficient method was suggested to detect iris and recognition it. This method depending on seed filling algorithm and circular area detection, where the color image converted to gray image, and then the gray image is converted to binary image. The seed filling is applied of the binary image and the position of detected object binary region (ROI) is localized in term of it is center coordinates are radii (i.e., the inner and out radius). To find the localization efficiency of suggested method has been used the coefficient of variation (CV) for radius iris for evaluation. The test results indicated that is suggested method is good for the iris detection.
Iris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature
... Show MoreIris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show MoreLeading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowi
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Localization is an essential issue in pervasive computing application. FM performs worse in some indoor environment when its structure is same to some extent the outdoor environment like shopping mall. Furthermore, FM signal are less varied over time, low power consumption and less effected by human and small object presence when it compared to Wi-Fi. Consequently, this paper focuses on FM radio signal technique and its characteristics that make it suitable to be used for indoor localization, its benefits, areas of applications and limitations.