Glitches are sudden increases in the rotational frequency (ν) of a neutron star.
Glitches usually occur as fractional increase in the frequency of the order of ⁄
= - .In this work we study the glitch in normal and magnetar pulsar stars,
glitches are small or absent in the millisecond pulsar star because it is old star
whereas the weak glitch activity of young pulsars by the fact that their internal
temperatures are still too high for the crust to store a large stress .The results showed
that NART (pulsed emission only at infrared) normal pulsar has more glitches than
AXP (Anomalous X-ray Pulsar) and HE (Spin-powered pulsar with pulsed emission
from radio to infrared or higher frequencies) stars, as the same time HE stars have
more glitches than AXP, in a good agreement with the previous studies. From the
results can be conclude that study of neutron star glitches is a very important study
in the evolution of neutron star as it helps in probing the neutron star interior.
Pulsar stars are rotating Neutron stars can be divided into two types Millisecond and Normal Pulsars. In this work the magnetic field are concentrated depends on the period (P), and Period derivative (P) for a sample Normal, Millisecond and Radio stars which adopted. In addition, the values of spin down luminosity and Heating rate are determined by depending on (Ostriker and Gunn) model. The results showed that older Millisecond define as having greater ages specified how long pulsars lives at that ages very long period pulsars to be observable have particularly large surface magnetic field. The results indicate that spin down of luminosity for Millisecond and Normal star must due to the main energy loss rotation axis to align with magne
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
There are different types of young isolated NSs: radio pulsars, compact central X-ray sources in supernova, magentas: anomalous x-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs).This paper shows that the value of magnetic field (B), characteristic age ( ), spin down luminosity ( equilibrium period ( and Flux density ( ) was determined depending on some properties of pulsar star, such as the value of period of the pulsar (P) and the time derivative period ( for sample stars which were adopted. The model that which adopted is Hallo Cone Model. The results showed that the Normal pulsar stars have a big magnetic field, equilibrium period and Spin down than the Millisecond pulsar stars.But Millisecond pulsar stars have large values of
... Show MorePulsar stars divided into two types depending on the periods of rotation, normal
emission Pulsar and Millisecond pulsars (MSPs). In this paper, the effect of the
strong magnetic field on the thermal emission in Millisecond pulsar stars is
concentrated. Also the luminosity spin down (Lsp) are calculated depends on the
periods (P), and Period derivative (
P
) for sample stars which were adopted. The
relation between internal and surface magnetic field is illustrated. The model that
which adopted is Hallo Cone Model (HCM)). The total magnetic dipole radiation
power (heating power Wh) of all super fluid neutrons in MSPs stars is calculated.
For sample stars of MSPs , the value of transition period (Ptr) was d
The radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.
Abstract
The nuclear structure of 28-40Si isotopes toward neutron dripline has been investigated in framework of shell model with Skyrme-Hrtree-Fock method using certain Skyrme parameterizations. Moreover, investigations of static properties such as nuclear densities for proton, neutron, mass, and, charge densities with their corresponding rms radii, neutron skin thicknesses, binding energies, separation energies, shell gap, and pairing gap have been performed using the most recent Skyrme parameterization. The calculated results have been compared with available experimental data to identify which of these parameterizations introduced equivalent results with the ex
... Show MoreAbstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the A
... Show MoreIn this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated t
... Show MoreIn this paper, photometric analysis of two short period group of the eclipsing binaries (RS CVn); RT And and BH Vir is presented. New physical and geometric parameters were obtained by performing two computer modeling. The first model is software package PHOEBE based on the Wilson–Devinney method, and the second is Binary Maker 3 (BM3).Our results are in good agreement with those obtained using the same modeling.