The huge amount of information in the internet makes rapid need of text
summarization. Text summarization is the process of selecting important sentences
from documents with keeping the main idea of the original documents. This paper
proposes a method depends on Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). The first step in our model is based on extracting seven
features for each sentence in the documents set. Multiple Linear Regression (MLR)
is then used to assign a weight for the selected features. Then TOPSIS method
applied to rank the sentences. The sentences with high scores will be selected to be
included in the generated summary. The proposed model is evaluated using dataset
supplied by the Text Analysis Conference (TAC-2011) for English documents. The
performance of the proposed model is evaluated using Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) metric. The obtained results support the
effectiveness of the proposed model.
In this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.
Recently, biometric technologies are used widely due to their improved security that decreases cases of deception and theft. The biometric technologies use physical features and characters in the identification of individuals. The most common biometric technologies are: Iris, voice, fingerprint, handwriting and hand print. In this paper, two biometric recognition technologies are analyzed and compared, which are the iris and sound recognition techniques. The iris recognition technique recognizes persons by analyzing the main patterns in the iris structure, while the sound recognition technique identifies individuals depending on their unique voice characteristics or as called voice print. The comparison results show that the resul
... Show MoreForeign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi
... Show MoreThe approach given in this paper leads to numerical methods to find the approximate solution of volterra integro –diff. equ.1st kind. First, we reduce it from integro VIDEs to integral VIEs of the 2nd kind by using the reducing theory, then we use two types of Non-polynomial spline function (linear, and quadratic). Finally, programs for each method are written in MATLAB language and a comparison between these two types of Non-polynomial spline function is made depending on the least square errors and running time. Some test examples and the exact solution are also given.
This paper introduces a generalization sequence of positive and linear operators of integral type based on two parameters to improve the order of approximation. First, the simultaneous approximation is studied and a Voronovskaja-type asymptotic formula is introduced. Next, an error of the estimation in the simultaneous approximation is found. Finally, a numerical example to approximate a test function and its first derivative of this function is given for some values of the parameters.
This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.
Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
Curing of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for
The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreToday the Genetic Algorithm (GA) tops all the standard algorithms in solving complex nonlinear equations based on the laws of nature. However, permute convergence is considered one of the most significant drawbacks of GA, which is known as increasing the number of iterations needed to achieve a global optimum. To address this shortcoming, this paper proposes a new GA based on chaotic systems. In GA processes, we use the logistic map and the Linear Feedback Shift Register (LFSR) to generate chaotic values to use instead of each step requiring random values. The Chaos Genetic Algorithm (CGA) avoids local convergence more frequently than the traditional GA due to its diversity. The concept is using chaotic sequences with LFSR to gene
... Show More