The principal aim of this research is to use the definition of fuzzy normed space
to define fuzzy bounded operator as an introduction to define the fuzzy norm of a
fuzzy bounded linear operator then we proved that the fuzzy normed space FB(X,Y)
consisting of all fuzzy bounded linear operators from a fuzzy norm space X into a
fuzzy norm space Y is fuzzy complete if Y is fuzzy complete. Also we introduce
different types of fuzzy convergence of operators.
Fuzzy measures are considered important tools to solve many environmental problems. Water pollution is one of the environmental problems, which has negatively effect on the health of consumers. In this paper, a mathematical model is proposed to evaluate water quality in the distribution networks of Baghdad city. Fuzzy logic and fuzzy measures have been applied to evaluate water quality with respect to chemical and microbiological contaminants. Our results are evaluate water pollution of some chemical and microbiological contaminants, which are difficult to evaluation through traditional methods.
The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
An adaptive fuzzy weighted linear regression model in which the output is based
on the position and entropy of quadruple fuzzy numbers had dealt with. The solution
of the adaptive models is established in terms of the iterative fuzzy least squares by
introducing a new suitable metric which takes into account the types of the influence
of different imprecisions. Furthermore, the applicability of the model is made by
attempting to estimate the fuzzy infant mortality rate in Iraq using a selective set of
inputs.
In this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups . Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups
The aim of this study is to use style programming goal and technical programming goal fuzzy to study assessing need annual accurately and correctly depending on the data and information about the quantity the actual use of medicines and medical supplies in all hospitals and health institutions during a certain period where they were taking the company public for the marketing of medicines and medical supplies sample for research. Programming model was built goal to this problem, which included (15) variable decision, (19) constraint and two objectives:
1 - rational exchange of budget allocated for medicines and supplies.
2 - ensure that the needs of patients of medicines and supplies needed to improve
This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
In this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
There are several methods that are used to solve the traditional transportation problems whose units of supply, demand quantities, and cost transportation are known exactly. These methods obtain basic solution, and develop it to the best solution through a series of consecutive calculations to obtain the optimal solution.
The steps are more complex with fuzzy variables, so this paper presents the disadvantages of solutions of the traditional ways with existence of variables in the fuzzy form.
This paper also presents a comparison between the results that emerged after using different conversion ranking formulas to convert from fuzzy form to crisp form on the same numerical example with a full fuzz
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.