The seismic reflection and gravity data were used to detect the tectonic boundaries in Kut-Hai-Fajir and surrounding areas, central Iraq. The depth maps of Dammam, Nhr Umr, and Sulaiy, formations were constructed and used to detect some boundareis in the study area. The residual gravity map and Total Horizantal derivative (THDR) also used to detected the tectonic boundaries. It is obtained that most boundaries or faults found in the deep formations; while some of them showen in the shallow fomations. The faults or boundaries obtained from gravity intrpretation mostly coincied with the deepest formation boundaries. Generally, the grvity anomalies conform the morphological feature locations within the depth maps of the formations. Many longitudinal and transverse faults were traced from the seismic and gravity interpretation. It is concluded that the oil fields in the study area lying within certain tectonic zones and coincide with the positive residual gervity anomalies of spacing window of 8 km; mostly near the zero line values. It is believed that the integrated interpretation of residual gravity anomalies with the depth maps of some formations, that inferred from seismic data, gives good results for evaluation of an area for oil exploration.
Gravity and magnetic data are used to study the tectonic situation of Al-Kut- Al-
Hai and surrounding areas in central Iraq. The study included application of many
processing and interpretation programs. The window method with different spacing
was used to separate the residual from regional anomalies for gravity and magnetic
data. The Total Horizontal Derivative (THDR) techniques used to identify the fault
trends in the basement and sedimentary cover rocks depending upon gravity and
magnetic data. The identified faults in the study area show (NW-SE), (NE-SW) (NS)
and (E-W) trends. It is believed that these faults extending from the basement to
the upper most layer of the sedimentary cover rocks.
Gravity and magnetic data are used to study the tectonic situation of Kut- Dewania- Fajir and surrounding areas in central Iraq. The study includes the using of window method with different spacing to separate the residual from regional anomalies of gravity and magnetic data. The Total Horizontal Derivative (THD) techniques used to identify the fault trends in the basement and sedimentary rocks depending upon gravity and magnetic data. The obtained faults trends from gravity data are (N30W), (N60W) (N80E) and (N20E) and from magnetic data are (N30W), (N70E), (N20E),(N10W),(N40E). It is believed that these faults extend from the basement to the lower layers of the sedimentary rocks except the N60W trend that observed clearly in gravity in
... Show MoreThe Bouguer gravity and magnetic RTP anomalies data were used to detect the main tectonic boundaries of middle and south of Diyala Province, east Iraq. Window method was used to separate the residual anomalies using different space windows for the Bouguer and Magnetic RTP maps. The residual anomaly processed in order to reduce noise and give a more comprehensive vision about subsurface lineaments structures. Results for descriptive interpretation presented as contour maps in order to locate directions and extensions of lineaments feature which may interpret as faults. The gradient technique is used for depth estimation of some gravity source which shows that the sources depth range between (13.65
... Show MoreGravity and magnetic data were used to study the deep crustal structures in Karbala and surrounding areas in central Iraq. The space window method was used to separate the residual from regional anomalies of gravity and magnetic data, the spaces of window are equal to 48,36 and 24 km. The Total Horizontal Derivative (THD) techniques and local wavenumber of gravity and magnetic are used to identify the faults and their trends with the basement rocks. The N45W, N45E, N-S and rarely E-W trends of faults are detected in the basement rock. It is believed that some of these faults extending from the basement to the uppermost layer of the sedimentary rocks.
A 3D velocity model was created by using stacking velocity of 9 seismic lines and average velocity of 6 wells drilled in Iraq. The model was achieved by creating a time model to 25 surfaces with an interval time between each two successive surfaces of about 100 msec. The summation time of all surfaces reached about 2400 msec, that was adopted according to West Kifl-1 well, which penetrated to a depth of 6000 m, representing the deepest well in the study area. The seismic lines and well data were converted to build a 3D cube time model and the velocity was spread on the model. The seismic inversion modeling of the elastic properties of the horizon and well data was applied to achieve a corrected veloci
... Show MoreThe gravity and magnetic data of Tikrit-Kirkuk area in central Iraq were considered to study the tectonic situation in the area. The residual anomalies were separated from regional using space windows method with space of about 24, 12 and 10km to delineate the source level of the residual anomalies. The Total Horizontal Derivative (THD) is used to identify the fault trends in the basement and sedimentary rocks depending upon gravity and magnetic data. The identified faults in the study area show (NW-SE), less common (NE-SW) and rare (N-S) trends. Some of these faults extending from the basement to the upper most layer of the sedimentary rocks. It was found that the depth of some gravity and magnetic source range 12-13Km, which confirm th
... Show MoreThe gravity anomalies of the Jurassic and deep structures were obtained by stripping the gravity effect of Cretaceous and Tertiary formations from the available Bouguer gravity map in central and south Iraq. The gravity effect of the stripped layers was determined depending on the density log or the density density obtained from the sonic log. The density relation with the seismic velocity of Gardner et al (1974) was used to obtain density from sonic logs in case of a lack of density log. The average density of the Cretaceous and Tertiary formation were determined then the density contrast of these formations was obtained. The density contrast and thickness of all stratigraphic formations in the area between the sea level to t
... Show MoreIn this research, a qualitative seismic processing and interpretation is made up
through using 3D-seismic reflection data of East-Baghdad oil field in the central part
of Iraq. We used the new technique, this technique is used for the direct hydrocarbons
indicators (DHI) called Amplitude Versus Offset or Angle (AVO or AVA) technique.
For this purposes a cube of 3D seismic data (Pre-stack) was chosen in addition to the
available data of wells Z-2 and Z-24. These data were processed and interpreted by
utilizing the programs of the HRS-9* software where we have studied and analyzed
the AVO within Zubair Formation. Many AVO processing operations were carried
out which include AVO processing (Pre-conditioning for gathe
The Bouguer gravity and magnetic RTP data were used to detect the depth of basement rocks in middle and south Diyala Province, east Iraq. The depth of the basement rocks was calculated by using the Source Parameter Imaging (SPI) method. New attempt is achieved to applied the SPI technique to the gravity values to estimate the depth of basement rocks. The depths of basement map derived from gravity data range 8-14 km, the depth of basement map derived from magnetic data range 9-13.5 km and the basement depth prepared by C.G.G, 1974 range 9-11 km. The derived maps from SPI method and that prepared by C.G.G, 1974 show good matching in the distribution of the depths of the study area. This study showed that basement’s depth range from
... Show MoreGeophysical data interpretation is crucial in characterizing the subsurface structure. The Bouguer gravity map analysis of the W-NW region of Iraq serves as the basis for the current geophysical research. The Bouguer gravity data were processed using the Power Spectrum Analysis method. Four depth slices have been acquired after the PSA process, which are: 390 m, 1300 m, 3040 m, and 12600 m depth. The gravity anomaly depth maps show that shallow-depth anomalies are mainly related to the sedimentary cover layers and structures, while the gravity anomaly of the deeper depth slice of 12600 m is more presented to the basement rocks and mantle uplift. The 2D modeling technique was used for