The aim of this study is to investigate the response of the Ionospheric E- region critical frequency foE and virtual height h’E parameters to the solar cycle 22 over Baghdad city (latitude 33.3˚N, longitude 44.4˚E). Both parameters display a high relationship with the sunspot relative number within the ascending and descending phases of the solar cycle. The E - region response to the solar activity is obvious around noon, sunrise and sunset times. Moreover, the gap between local mid-afternoon, dawn and sunset values expands as solar activity rises. In the declining phase, there is an aspect that results in a peak of disturbance. This portion may have linked to coronal holes and resulted in high disturbance peak during 1992-1994. The impact of this portion is obvious in raising the values of foE, especially in 1993.
This research dedicated to make an investigation for the variation of electron density concentration of D- region(NmD), at a characteristic height of 81 km throughout solar cycle 23, with solar activity(represented by sunspot number indices: international sunspot number(Ri), Northern hemisphere sunspot number(Rn) and Southern hemisphere sunspot number(Rs), as well as, the correlation between these indices for Baghdad city(lat.: 33.3o N, long.: 44.4o E) at local noon time during the ascending and the descending phases of solar cycle 23. A very strong directly relationship were found between Ri, Rn and Rs with NmD, as well as, the correlation coefficient between these parameters have been calculated and it has been found it is equal, i.e.,
... Show MoreThe influence of solar activity on the predicted ionospheric temperature parameters (electron Te, Ion Ti and neutral particle Tn) have been investigated over ionospheric Iraqi region by data generated using International Reference Ionosphere (IRI) and Madrigal models, the models result have been compared during the minimum and the maximum of solar cycle 24 for the years 2009 and 2016 respectively and for an altitudes ranged from 200-1000 km. The region under consideration spans over (latitude 29.1-37.2oN; longitude 38.9-47.7oE) within Iraq territory, the purpose of this paper is to determine the affection of the solar activity represented by the (sunspot number and solar flux) on the annual behavio
... Show MoreIn this work, the annual behavior of critical frequency and electron density parameters of the ionosphere have been studied for the years (1989, 2001 and 2014) and (1986, 1996 and 2008) which represent the maximum and minimum of years in the solar cycles (22, 23 and 24) respectively. The annual behavior of (Ne, fo ) parameters have been investigated for different heights of Ionosphere layer (100 -1000) Km. The dataset was created both of critical frequency and electron density parameters by using the international reference ionosphere model (IRI-2016 model). This study showed result that during the maximum solar cycles the values of the (Ne) parameter change with
The present work aimed to examine the nature and degree of the cross-correlations among three different ionospheric indices: these are Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). VOCAP and ASASPS models were adopted to determine the datasets of the selected ionospheric indices. The determination was made for different transceiver stations that provide certain HF connection links during the minimum and maximum years of solar cycle 24, 2009 and 2014, respectively. Matlab program was implemented to produce the geodesic parameters for the selected transceiver stations. The determination was made for different path lengths (500, 1000, 1500, and 2000) Km and bearings (0o, 45
... Show MoreIn this research, an investigation for the compatibility of the IRI-2016 and ASAPS international models was conducted to evaluate their accuracy in predicting the ionospheric critical frequency parameter (foF2) for the years 2009 and 2014 that represent the minimum and maximum years of solar cycle 24. The calculations of the monthly average foF2 values were performed for three different selected stations distributed over the mid-latitude region. These stations are Athens - Greece (23.7o E, 37.9 o N), El Arenosillo - Spain (-6.78 o E, 37.09 o N), and Je Ju - South Korea (124.53 o E, 33.6 o N). The calculated v
... Show MoreIn this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,
... Show MoreIn this work various correlation methods were employed to investigate the annual cross-correlation patterns among three different ionospheric parameters: Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). The annual predicted dataset for these parameters were generated using VOCAP and ASASPS models based on the monthly Sunspot Numbers (SSN) during two years of solar cycle 24, minimum 2009 and maximum 2014. The investigation was conducted for Thirty-two different transmitter/receiver stations distributed over Middle East. The locations were selected based on the geodesic parameters which were calculated for different path lengths (500, 1000, 1500, and 2000) km and bearings (N, NE, E, S
... Show MoreIn this paper, an analytical study for the behavior of ionospheric parameters (Maximum Usable Frequency (MUF) and Optimum Traffic Frequency (FOT)) has been preformed between transmitter station (Baghdad) and many different receiver stations which are distributed randomly over Iraqi territory. The ionospheric parameters dataset has been made using ICEPAC communication model for annual time for the years 2009-2011 of the solar cycle 24. A simplified ionospheric model has been suggested which based on the correlated relationship between the geographical locations coordinates (longitudes & latitudes) of receiver stations and the dataset of the MUF and FOT parameters. The results of this study showed that the correlation between the ionos
... Show MoreIn this research, the TEC parameter has been determined for the ionosphere layer over the Iraqi zone. The calculations of this parameter have been conducted using the IRI model that considered as one of the recommended international models which used to calculate the ionosphere parameter (TEC). The determinations have been made for several sites or sites that located within the Iraqi territory. The years (2011-2013) of the solar cycle 24 have been adopted to make the determinations for the TEC parameter.The capital Baghdad has been selected to represent the transmitter station and many different communication points which are located in different directions around the transmitter station have been represented as receiving stations.