Preferred Language
Articles
/
ijs-535
Outdoor Scene Classification Using Multiple SVM

This paper presents a hierarchical two-stage outdoor scene classification method using multi-classes of Support Vector Machine (SVM). In this proposed method, the gist feature of all the images in the database is extracted first to obtain the feature vectors. The image of database is classified into eight outdoor scenes classes, four manmade scenes and four natural scenes. Second, a hierarchical classification is applied, where the first stage classifies all manmade scene classes against all natural scene classes, while the second stage of a hierarchical classification classifies the outputs of first stage into either one of the four manmade scene classes or natural scene classes. Binary SVM and multi-classes SVMs are employed in the first and second stage of a hierarchical classification respectively. The proposed method is designed also to compare and find the most suitable multi-classes SVMs approach and the kernel function for classification task, where their performances are analyzed based on experimental results. The multi-classes SVMs used in this paper are One-versus-All (OvA) and One-versus-One (OvO), while the kernel functions used are linear kernel, Radius Basis Function (RBF) kernel and Polynomial kernel. Experimental results indicate that OvO classifier provides better performance than OvA classifier. The results, also show that the Polynomial kernel function is superior to others kernel function.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Using One-Class SVM with Spam Classification

Support Vector Machine (SVM) is supervised machine learning technique which has become a popular technique for e-mail classifiers because its performance improves the accuracy of classification. The proposed method combines gain ratio (GR) which is feature selection method with one-class training SVM to increase the efficiency of the detection process and decrease the cost. The results show high accuracy up to 100% and less error rate with less number of feature to 5 features.

View Publication Preview PDF
Publication Date
Tue Jul 31 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
Classification and monitoring of autism using svm and vmcm

Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this

... Show More
Scopus (3)
Scopus
Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Improving Measurement of Effectiveness of Blended Learning in Iraqi Education Using SVM

E-learning has recently become of great importance, especially after the emergence of the Corona pandemic, but e-learning has many disadvantages. In order to preserve education, some universities have resorted to using blended learning. Currently, the Ministry of Higher Education and Scientific Research in Iraq has adopted e-learning in universities and schools, especially in scientific disciplines that need laboratories and a spatial presence. In this work, we collected a dataset based on 27 features and presented a model utilizing a support vector machine with regression that was enhanced with the KNN method, which identifies factors that have a substantial influence on the model for the type of education, whether blended or traditiona

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
EEG Signals Analysis for Epileptic Seizure Detection Using DWT Method with SVM and KNN Classifiers

Epilepsy is a critical neurological disorder with critical influences on the way of living of its victims and prominent features such as persistent convulsion periods followed by unconsciousness. Electroencephalogram (EEG) is one of the commonly used devices for seizure recognition and epilepsy detection. Recognition of convulsions using EEG waves takes a relatively long time because it is conducted physically by epileptologists. The EEG signals are analyzed and categorized, after being captured, into two types, which are normal or abnormal (indicating an epileptic seizure).  This study relies on EEG signals which are provided by Arrhythmia Database. Thus, this work is a step beyond the traditional database mission of delivering use

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Detecting Keratoconus by Using SVM and Decision Tree Classifiers with the Aid of Image Processing

 Researchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The

... Show More
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Scene Text Recognition: A Review

      The problem of text recognition and its applicability as part of images captured in the wild has gained a significant attention from the computer vision community in recent years. In contrast to the recognition of printed documents, scene text recognition is a difficult problem. Contrary to recognition of printed documents, recognizing a scene text is a challenging problem. Many researches focus on the problem of recognizing text extracted from natural scene images. Significant attempts have been made to address this problem in recent past. However, many of these attempts work on utilizing availability of strong context, which naturally limits the dictionary. This paper presents a review of recent papers related to scene text

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Prediction of DNA Binding Sites Bound to Specific Transcription Factors by the SVM Algorithm

In gene regulation, transcription factors (TFs) play a key function. It transmits genetic information from DNA to messenger RNA during the process of DNA transcription. During this step, the transcription factor binds to a segment of the DNA sequence known as Transcription Factor Binding Sites (TFBS). The goal of this study is to build a model that predicts whether or not a DNA binding site attaches to a certain transcription factor (TF). TFs are regulatory molecules that bind to particular sequence motifs in the gene to induce or restrict targeted gene transcription. Two classification methods will be used, which are support vector machine (SVM) and kernel logistic regression (KLR). Moreover, the KLR algorithm depends on another regress

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF