Preferred Language
Articles
/
ijs-5087
Investigation of Ground Density Distributions and Charge Form Factors for 14,16,18,20,22N using Cosh Potential
...Show More Authors

     The bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 19F, 27Al and 25Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 25Mg, 27Al and 29Si nuclei
...Show More Authors

An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Charge density distributions and electron scattering form factors of 19F, 22Ne and 26Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with the
tenser force correlations ( TC's), is produced and used to derive an explicit form for
ground state two-body charge density distributions (2BCDD's) applicable for
19F,22Ne and 26Mg nuclei. It is found that the inclusion of the two-body TC's has the
feature of increasing the central part of the 2BCDD's significantly and reducing the
tail part of them slightly, i.e. it tends to increase the probability of transferring the
protons from the surface of the nucleus towards its centeral region and consequently
makes the nucleus to be more rigid than the case when there is no TC's and also
leads to decrease the
1/ 2
2 r of the nucleus. I

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei
...Show More Authors

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Nov 22 2014
Journal Name
Indian Journal Of Physics
Comparison between shell model and self-consistent mean field calculations for ground charge density distributions and elastic form factors of 12C and 16O nuclei
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Study of charge density distributions, elastic charge form factors and root-mean square radii for 4He, 12C and 16O nuclei using Woods- Saxon and harmonic-oscillator potentials
...Show More Authors

The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
CDD Study of Charge Density Distributions and Elastic Electron Scattering Cross Sections for some Stable Nuclei: Charge Density Distributions
...Show More Authors

paper

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States
...Show More Authors

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Density distributions and form factors of the exotic 8B nucleus
...Show More Authors

Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Calculation of The Nuclear Matter Density Distributions and Form Factors For The Ground State of P 12 PBe and P 14 PBe Nuclei
...Show More Authors

The ground state charge, neutron and matter densities for two-neutron halo nuclei P
12
PBe
and P
14
PBe are calculated within a two- frequency shell model approach. In the description of
the halo nuclei it is important to take into account a model space for P
10
PBe and P
12
PBe different
from the two halo neutrons which have to be treated separately in order to explain their
properties. The structures of the halo P
12
PBe and P
14
PBe nuclei show that the dominant
configurations when the two halo neutrons distributed over the 1d shell orbits. Elastic
Coulomb scattering form factors of these two exotic nuclei are also studied through the
combination of the density distributions of

... Show More
View Publication Preview PDF