Preferred Language
Articles
/
ijs-5058
Study of the Impact of Unsteady Squeezing Magnetohydrodynamics Copper-Water with Injection-Suction on Nanofluid Flow Between Two Parallel Plates in Porous Medium
...Show More Authors

      In this article,  the existence of thermal radiation with Copper- water nanofluid, the effect of heat transfer in  unsteady magnetohydrodynamics (MHD) squeezing and suction-injection on the flow between parallel plates( porous medium) are studied. Rosseland approximation and   the radiation of  heat flux are used to depict the energy equation. The set of ordinary differential equations  with  boundary conditions are analytically resolved by applying a new approach method (NAM). The influences of thermal field and physical parameters on dimensionless flow field  have been displayed in tabular and graphs form. The presented results show that the heat transfer coefficient is reduced by the thermal radiation coefficient increases and  the absolute values of the skin friction coefficients are enhanced with the magnetic amplification parameter. Regularly, the present outcomes discern that the parameters of the injection-suction coefficient are both the  temperature and velocity profiles decline.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Electrical Conductivity on Fluid Flow between Two Parallel Plates in a Porous Medioum
...Show More Authors

This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system b

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Influence of Inclined MHD on Unsteady Flow of Generalized Maxwell Fluid with Fractional Derivative between Two Inclined Coaxial Cylinders through a Porous Medium
...Show More Authors

"This paper presents a study of inclined magnetic field on the unsteady rotating flow of a generalized Maxwell fluid with fractional derivative between two inclined infinite circular cylinders through a porous medium. The analytic solutions for velocity field and shear stress are derived by using the Laplace transform and finite Hankel transform in terms of the generalized G functions. The effect of the physical parameters of the problem on the velocity field is discussed and illustrated graphically.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Unsteady Heat Transfer Analysis on The MHD Flow of A Second Grade Fluid in A Channel with Porous Medium
...Show More Authors

The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.

View Publication Preview PDF
Publication Date
Mon May 31 2021
Journal Name
Iraqi Journal Of Science
Impacts of Porous Medium on Unsteady Helical Flows of Generalized Oldroyd-B Fluid with Two Infinite Coaxial Circular Cylinders
...Show More Authors

This article deals with the influence of porous media on helical flows of generalizedOldroyd-B between two infinite coaxial circular cylinders.The fractional derivative is modeled for this problem and studied by using finite Hankel and Laplace transforms.The velocity fields are found by using the fundamentals of the series form in terms of Mittag-Lefflerequation.The research focused on permeability parameters , fractional parameters(

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Unsteady Magnetohydrodynamics oscillating flow of third order fluid with central free stream velocity
...Show More Authors

In this article the unsteady magnetohydrodynamics oscillating flow of third order fluid with free stream velocity is proposed. It is found that the motion equation is controlled by five dimensionless parameters namely the coecostic parameter 4, viscoelostic parameter ?,acceleration/deceleration c,suction/blowing d and material constants ? . The effect of each of these parameters upon the velocity distribution is analysised

View Publication Preview PDF
Crossref
Publication Date
Thu Nov 11 2021
Journal Name
Iraqi Journal Of Science
Impacts of porous medium on unsteady helical flows of generalized oldroyd-B fluid with two infinite coaxial circular cylinders
...Show More Authors

Scopus (7)
Scopus
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Peristaltic Flow with Nanofluid under Effects of Heat Source, and Inclined Magnetic Field in the Tapered Asymmetric Channel through a Porous Medium
...Show More Authors

     In this present paper , a special model was built to govern the equations of  two dimensional peristaltic transport to nanofluid  flow of a heat source in a tapered  considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise  communicates increased in case of  non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA  11 program has been used to solve such system after obtaining the initial conditions.  Most of the results  of drawing  for many are obtained via above program .

View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Impact of Varying Viscosity with Hall Current on Peristaltic Flow of Viscoelastic Fluid Through Porous Medium in Irregular Microchannel
...Show More Authors

    In this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are  presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Impact of Porous Media on Peristaltic Transport of Tangent Hyperbolic Nanofluid in Asymmetric Channel
...Show More Authors

The purpose behind this paper is to discuss nanoparticles effect, porous media, radiation and heat source/sink parameter on hyperbolic tangent nanofluid of peristaltic flow in a channel type that is asymmetric. Under a long wavelength and the approaches of low Reynolds number, the governing nanofluid equations are first formulated and then simplified. Associated nonlinear differential equations will be obtained after making these approximations. Then the concentration of nanoparticle exact solution, temperature distribution, stream function, and pressure gradient will be calculated. Eventually, the obtained results will be illustrated graphically via MATHEMATICA software.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Influence of MHD for Newtonian Fluid and Heat Transfer in Microchannals between Two Parallel Plates Using HAM
...Show More Authors

The aim of this paper is the study of the influence magnetic field on steady state
flows and heat transfer in microchannels between two parallel plates.
It is found that the motion equations are controlled by many dimensionless
parameter, namely magnetic field parameter M Reynolds number Re, physical
quantity at wall W and Knudsen number Kn also found that the energy equations
are controlled by many dimensionless parameter, namely magnetic field parameter
M Reynolds number Re, physical quantity at wall W and Knudsen number Kn ,
Prinkman number Br and Peclet number Pe.
The equations which controlled this type of fluid flow are complicated, so finding
an analytical solution is not easy.
We obtained the velocit

... Show More
View Publication Preview PDF