Preferred Language
Articles
/
ijs-487
Some application of coding theory in the projective plane of order three

The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective plane of order three. The maximum value of size of code over finite field of order three and an incidence matrix with the parameters,  (length of code),  (minimum distance of code) and  (error-correcting of code ) have been constructed. Some examples and theorems have been given.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
New Kinds of Blocking sets in a Projective Plane PG(2,q)

In this work, new kinds of blocking sets in a projective plane over Galois field PG(2,q) can be obtained. These kinds are called the complete blocking set and maximum blocking set. Some results can be obtained about them.

View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Classification of the Projective Line over Galois Field of Order 31

Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.

Scopus Crossref
View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)

  The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs.         All of these arcs are incomplete.         The number of distinct (12,3)-arcs are six, two of them are complete.         There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete.         There exists one complete (15,3)-arc.
 

View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
On the Size of Complete Arcs in Projective Space of Order 17

The main goal of this paper is to show that a
-arc in
and
is subset of a twisted cubic, that is, a normal rational curve. The maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are classified. It is then shown that this maximum is
for all dimensions up to
.

View Publication Preview PDF
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(9)

  In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.

View Publication Preview PDF
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Maximum Complete (k,n)-Arcs in the Projective Plane PG(2,4) By Geometric Method

A (k,n)-arc A in a finite projective plane PG(2,q) over Galois field GF(q), q=pⁿ for same prime number p and some integer n≥2, is a set of k points, no n+1 of which are collinear.  A (k,n)-arc is complete if it is not contained in a(k+1,n)-arc.  In this paper, the maximum complete (k,n)-arcs, n=2,3 in PG(2,4) can be constructed from the equation of the conic.

View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Groups Effect of Types 5 D and 5 Α on The Points of Projective Plane Over 31 ,29,F =qq

  The purpose of this paper is  to find an arc of degree five in 31 ,29),(2, =qqPG , with stabilizer group of type dihedral group of degree five 5 D and arcs of degree six and ten with stabilizer groups of type alternating group of degree five 5 A ,  then study the effect of  5 D and 5A on the points of projective plane. Also, find a pentastigm which has collinear diagonal points.

View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Subgroups and Orbits by Companion Matrix in Three Dimensional Projective Space

The aim of this paper is to construct cyclic subgroups of the projective general linear group over  from the companion matrix, and then form caps of various degrees in . Geometric properties of these caps as secant distributions and index distributions are given and determined if they are complete. Also, partitioned of  into disjoint lines is discussed.

Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri May 16 2014
Journal Name
International Journal Of Computer Applications
Crossref (4)
Crossref
View Publication
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering