Preferred Language
Articles
/
ijs-4865
Medical Ultrasound Image Quality Enhancement and Regions Segmentation
...Show More Authors

     Medical Ultrasound (US) has many features that make it widely used in the world. These features are safety, availability and low cost. However, despite these features, the ultrasound suffers from problems. These problems are speckle noise and artifacts. In this paper, a new method is proposed to improve US images by removing speckle noise and reducing artifacts to enhance the contrast of the image. The proposed method involves algorithms for image preprocessing and segmentation. A median filter is used to smooth the image in the pre-processing. Additionally, to obtain best results, applying median filter with different kernel values. We take the better output of the median filter and feed it into the Gaussian filter, which then feeds the output of the Gaussian filter into histogram equalization to improve image visualization. The segmentation is done by thresholding and region growing segmentation. The value of threshold 128 was found to be better after we tested many values of thresholding. This value of thresholding combined with region growing gave accurate result segmentation of images. This paper demonstrates how image noise, artifacts and techniques were used effectively to improve image quality, and the analysis of performance of various techniques.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Aro-the Scientific Journal Of Koya University
Membrane Computing for Real Medical Image Segmentation
...Show More Authors

In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Medical Image Segmentation using Modified Interactive Thresholding Technique
...Show More Authors

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 20 2014
Journal Name
Jurnal Teknologi
A Review of Snake Models in Medical MR Image Segmentation
...Show More Authors

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal

... Show More
Scopus (10)
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Medical Image Enhancement to Extract Brain Tumors from CT and MRI images
...Show More Authors

     Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean.  The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jul 28 2016
Journal Name
Computer And Information Science
Refinement for Ocular Ultrasound Images Quality by Utilizing Combination of Enhancement Techniques
...Show More Authors

Ultrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
Comparing the Main Approaches of Image Segmentation
...Show More Authors

Images are important medium for conveying information; this makes improvement of image processing techniques also important. Interpretation of image content is one of the objectives of image processing techniques. Image interpretation that segments the image to number of objects called image segmentation. Image segmentation is an important field to deal with the contents of images and get non overlapping regions coherent in texture and color, it is important to deal only with objects with significant information. This paper presents survey of the most commonly used approaches of image segmentation and the results of those approaches have been compared and according to the measurement of quality presented in this paper the Otsu's threshol

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Unsupervised Segmentation Method for Thyroid Nodules in Ultrasound Images
...Show More Authors

Thyroid is a small butterfly shaped gland located in the front of the neck just below the Adams apple. Thyroid is one of the endocrine gland, which produces hormones that help the body to control metabolism. A different thyroid disorder includes Hyperthyroidism, Hypothyroidism, and thyroid nodules (benign/malignant). Ultrasound imaging is most commonly used to detect and classify abnormalities of the thyroid gland. Segmentation method is a tool that used widely in many applications including medical image processing. One of the common applications of segmentation is in medical image analysis for clinical diagnosis that has an important role in terms of quality and quantity.
The main objective of this research is to use the Computer-Ai

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
Image Segmentation for Skin Detection
...Show More Authors

Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu

... Show More
View Publication
Crossref (4)
Crossref