Preferred Language
Articles
/
ijs-4596
Survey For Arabic Part of Speech Tagging based on Machine Learning
...Show More Authors

      The Arabic Language is the native tongue of more than 400 million people around the world,  it is also a language that carries an important religious and international weight.  The Arabic language has taken its share of the huge technological explosion that has swept the world, and therefore it needs to be addressed with natural language processing applications and tasks.

This paper aims to survey and gather the most recent research related to Arabic Part of Speech (APoS), pointing to tagger methods used for the Arabic language, which ought to aim to constructing corpus for Arabic tongue. Many AI investigators and researchers have worked and performed POS utilizing various machine-learning methods, such as Hidden-Markov-Model (HMM), Brill, Maximum-Match (MM), decision tree, bee colony, Neural-Network (NN), and other hybrid methods.

This survey groups a number of published papers based on the Arabic Language Applications (ALP) towards tagging related problems utilized and approaches with the difference between types of tags used. It addresses and tries to identify the gaps in the current studies putting a foundation for future studies in this field.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accu

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th

... Show More
Scopus (11)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Boltzmann Machine Neural Network for Arabic Speech Recognition
...Show More Authors

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with 

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (270)
Crossref (238)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Image and Video Tagging Survey
...Show More Authors

     Marking content with descriptive terms that depict the image content is called “tagging,” which is a well-known method to organize content for future navigation, filtering, or searching. Manually tagging video or image content is a time-consuming and expensive process. Accordingly, the tags supplied by humans are often noisy, incomplete, subjective, and inadequate. Automatic Image Tagging can spontaneously assign semantic keywords according to the visual information of images, thereby allowing images to be retrieved, organized, and managed by tag. This paper presents a survey and analysis of the state-of-the-art approaches for the automatic tagging of video and image data. The analysis in this paper covered the publications

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Classification Based on Weighted Extreme Learning Machine
...Show More Authors

The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed   a great competence of the proposed WELM compared to the ELM. 

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Heart Disease Classification–Based on the Best Machine Learning Model
...Show More Authors

    In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne

... Show More
View Publication Preview PDF
Scopus (12)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Crossref