Let S be a prime inverse semiring with center Z(S). The aim of this research is to prove some results on the prime inverse semiring with (α, β) – derivation that acts as a homomorphism or as an anti- homomorphism, where α, β are automorphisms on S.
Let be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
In this paper we introduce the definition of Lie ideal on inverse semiring and we generalize some results of Herstein about Lie structure of an associative rings to inverse semirings.
Let S be an inverse semiring, and U be an ideal of S. In this paper, we introduce the concept of U-S Jordan homomorphism of inverse semirings, and extend the result of Herstein on Jordan homomorphisms in inverse semirings.
In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.
The main purpose of this work is to generalize Daif's result by introduceing the concept of Jordan (α β permuting 3-derivation on Lie ideal and generalize these result by introducing the concept of generalized Jordan (α β permuting 3-derivation
It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.
This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.