A food chain model in which the top predator growing logistically has been proposed and studied. Two types of Holling’s functional responses type IV and type II have been used in the first trophic level and second trophic level respectively, in addition to Leslie-Gower in the third level. The properties of the solution are discussed. Since the boundary dynamics are affecting the dynamical behavior of the whole dynamical system, the linearization technique is used to study the stability of the subsystem of the proposed model. The persistence conditions of the obtained subsystem of the food chain are established. Finally, the model is simulated numerically to understand the global dynamics of the food chain under study.
In this paper, the aquatic food chain model, consisting of Phytoplankton, Zooplankton, and Fish, in the contaminated environment is proposed and studied. Modified Leslie–Gower model with Holling type IV functional response are used to describe the growth of Fish and the food transition throughout the food chain, respectively. The toxic substance affects directly the Phytoplankton and indirectly the other species. The local stability analysis of all possible equilibrium points is done. The persistence conditions of the model are established. The basin of attraction for each point is specified using the Lyapunov function. Bifurcation analysis near the coexistence equilibrium point is investigated. Detecting the existence of chao
... Show MoreIn this paper, chaotic and periodic dynamics in a hybrid food chain system with Holling type IV and Lotka-Volterra responses are discussed. The system is observed to be dissipative. The global stability of the equilibrium points is analyzed using Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is characterized by attractors and bifurcation diagram. The effect of the controlling parameter of the model is investigated theoretically and numerically.
The cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.
A three species food web model involving a stage structure and cannibalism in the top predator species is proposed and studied. It is assumed that the prey species growth logistically in the absence of predator and the predation process occurred according to theLotka-Volterra functional response. The existence, uniqueness and bounded-ness of the solution of the model are investigated. The local and global stability conditions of all possible equilibrium points are established.The persistence conditions of the model are also determined. The local bifurcation near each of the equilibrium points is analyzed. The global dynamics of the model is investigated numerically and compared with the obtained analytical results. It is observed that the p
... Show MoreIn this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical
... Show More‎ Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19 pandemic ‎has been spreading to many countries in the world. The ongoing COVID-19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In the absence of any effective therapeutics or drugs ‎and with an unknown epidemiological life cycle, predictive mathematical models can aid in ‎the understanding of both control and management of coronavirus disease. Among the important ‎factors that helped the rapid spread of the ep
... Show MoreThis paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a
... Show MoreThis article suggests and explores a three-species food chain model that includes fear effects, refuges depending on predators, and cannibalism at the second level. The Holling type II functional response determines food consumption between stages of the food chain. This study examined the long-term behavior and impacts of the suggested model's essential elements. The model's solution properties were studied. The existence and stability of every probable equilibrium point were examined. The persistence needs of the system have been determined. It was discovered what conditions could lead to local bifurcation at equilibrium points. Appropriate Lyapunov functions are utilized to investigate the overall dynamics of the system. To support the a
... Show MoreTaking into account the significance of food chains in the environment, it demonstrates the interdependence of all living things and has economic implications for people. Hunting cooperation, fear, and intraspecific competition are all included in a food chain model that has been developed and researched. The study tries to comprehend how these elements affect the behavior of species along the food chain. We first examined the suggested model's solution properties before calculating every potential equilibrium point and examining the stability and bifurcation nearby. We have identified the factors that guarantee the global stability of the positive equilibrium point using the geometric approach. Additionally, the circumstances that would gu
... Show MoreIn this work, we consider a modification of the Lotka-Volterra food chain model of three species, each of them is growing logistically. We found that the model has eight equilibrium points, four of them always exist, while the rest exist under certain conditions. In terms of stability, we found that the system has five unstable equilibrium points, while the rest points are locally asymptotically stable under certain satisfying conditions. Finally, we provide an example to support the theoretical results.