In this work , we applied the nuclear shell model by using Modified Surface Delta Interaction ( MSDI ) to study the nuclear structure for Ti42-44 nuclei from the calculation of the energy level values and its total angular momentum . After comperation with the experiment values which found to be rather in good agreement and determined the total angular momentum values of energy levels which are not assigned experimently , as soon as , we certify some values that were not certained experimently .
The fluctuation properties of energy spectrum, electromagnetic transition intensities and electromagnetic moments in nucleus are investigated with realistic shell model calculations. We find that the spectral fluctuations of are consistent with the Gaussian orthogonal ensemble of random matrices. Besides, we observe a transition from an order to chaos when the excitation energy is increased and a clear quantum signature of the breaking of chaoticity when the single-particle energies are increased. The distributions of the transition intensities and of the electromagnetic moments are well described by a Porter-Thomas distribution. The statistics of electromagnetic transition intensities clearly deviate from a Porter-Thomas distribution (i
... Show MoreChaotic features of nuclear energy spectrum in 68Ge nucleus are investigated by nuclear shell model. The energies are calculated through doing shell model calculations employing the OXBASH computer code with effective interaction of F5PVH. The 68Ge nucleus is supposed to have an inert core of 56Ni with 12 nucleons (4 protons and 8 neutrons) move in the f5p-model space ( and ). The nuclear level density of considered classes of states is seen to have a Gaussian form, which is in accord with the prediction of other theoretical studies. The statistical fluctuations of the energy spectrum (the level spacing P(s) and the Dyson-Mehta (or statistics) are well described by the Gaussian orthogonal ens
... Show MoreAn analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tassie mod
An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass
The study of improved model for measuring the total nuclear fusion cross section characteristics the D-D reaction may play an important role in deciding or determining the hot plasma parameters such as mean free path , the reaction rate , reactivity and energy for emitted neutrons or protons in our work we see the it is necessary to modify the empirical formulas included the total cross section in order to arrive or achieve good agreement with the international publish result.
In parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror ener
... Show MoreThis work is devoted to study the properties of the ground states such as the root-mean square ( ) proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors for Carbon Isotopes (9C, 12C, 13C, 15C, 16C, 17C, 19C and 22C). The calculations are based on two approaches; the first is by applying the transformed harmonic-oscillator (THO) wavefunctions in local scale transformation (LST) to all nuclear subshells for only 9C, 12C, 13C and 22C. In the second approach, the 9C, 15C, 16C, 17C and 19C isotopes are studied by dividing the whole nuclear system into two parts; the first is the compact core part and the second is the halo part. The core and halo parts are studied using the
... Show MoreThe nuclear structure of 40Ar, 112Cd, 133Cs, 151Eu, 154Sm, and 226Ra target nuclei used in nuclear battery technology was investigated. These nuclei are widely used for the radioisotope thermo-electric generator space studies and for betavoltaic battery microelectronic systems. For this purpose, some nuclear static properties were calculated. In particular, the single particle radial nuclear density distribution, the corresponding root mean square radii, neutron skin thicknesses, and binding energies were calculated within the framework of Hartree-Fock approximation with Skyrme interaction. The bremsstrahlung spectra produced by the absorption of beta particles throu
... Show More