Basal breccia unconformity layer between Anah and Euphrates Formations in Al-Haqlaniyah area, Western desert, include enormous sinkholes and cavities usually cause severe damages to any kind of engineering facilities built over it. Two-dimensional resistivity imaging has been applied to detect the depth and extent of the subsurface caves at five stations. The dipole-dipole array is chosen with an electrode spacing of 2 meters. 2D Dipole-dipole imaging inverse models show the resistivity values have a big variation between the anomalous background resistivity of rocks and part of cavities. These models showed shallow cavities at 1 to 3 m depth and others at 5to 6 m depth and extending to a depth of 23 m. The unconformity layer is less cohesive than the rocks beneath and above it. So it was the best area for the caves to be formed as a result of dissolving its rocks by leaking rainwater and groundwater. Therefore, it must be a pre-engineering preparation before starting any urban construction of the population in the study area or adjacent areas to avoid risks.
The 2D imaging survey was conducted across an unknown K- 3 cavity that is located in Haditha area-Western Iraq.2D measurements are collected along two intercrossing traverses above the cavity with 105m length of each one. Dipole-dipole array is performed with n-factor of 6 and a-spacing equals to 5m. The inverse models of 2D imaging technique showed clearly that the resistivity contrast between the anomalous part of cavity and background resistivity of rocks is about 800:100 Ωm .In addition, the invers models showed that the depth from ground surface to the upper roof of cavity approximately equals to 11m near the cavity operator. So, the K-3 cavity is well defined from 2D imaging with Dipole –dipole array in comparison with the actua
... Show MoreIraqi western desert is characterized by a widespread karst phenomenon and caves. Euphrates formation (Lower Miocene) includes enormous sinkholes and cavities within carbonate rocks that usually cause severe damages to any kind of engineering facilities built over it. 3D resistivity imaging techniques were used in detecting this kind of cavities in complicated lithology. The 3D view was fulfilled by collating seven 2D imaging lines. The 2D imaging survey was carried out by Dipole-dipole array with (n) factor and electrode spacing (a) of 6 and 2m respectively. The horizontal slices of the 3D models give a good subsurface picture. There are many caves in all directions (x, y, z). They reveal many small caves near the surface. Thes
... Show MoreThe presence of natural voids and fractures (weak zones) in subsurface gypsiferous soil and gypsum, within the University of Al-Anbar, western Iraq. It causes a harsher problem for civil engineering projects. Electrical resistivity technique is applied as an economic decipher for investigation underground weak zones. The inverse models of the Dipole-dipole and Pole-dipole arrays with aspacing of 2 m and an n-factor of 6 clearly show that the resistivity contrast between the anomalous part of the weak zone and the background. The maximum thickness and shape are well defined from 2D imaging with Dipole-dipole array, the maximum thickness ranges between 9.5 to 11.5 m. It is concluded that the 2D imaging survey is a useful technique and more
... Show MoreCracking of soils affects their geotechnical properties and behavior such as soil strength and stability. In this paper, 2D Electrical Resistivity Imaging Method, as a non-invasive technique, was adopted to investigate the effect of soil cracks of a centemetric scale on resistivity of sandy soil. The electrical resistivity measurements were carried out using ABEM SAS 300C Terrameter system at a laboratory scale using Wenner array. The measurements were interpreted using horizontal profiles, forward modeling and 2D inverse resistivity sections. The results showed that soil cracks cause significant changes in soil resistivity. These changes can be attributed to the high resistivity contrast between the highly resistive air-filled cracks an
... Show MoreAn electrical survey was carried out by using 2D imaging technique at (15)
station. The study area is located southern Al-Shihaby area, south-east of Wasit
governorate, Eastern Iraq. The numbers of the employed electrodes were (120) and
the (a) spacing equal to (10m), and the total length of survey line is (1200m). The
inverse models of 2D imaging showed one Quaternary aquifer located in the
Quaternary deposits which comprises in alluvial fan and wind deposits of
(Pleistocene – Holocene) ages. Layers of aquifer consist of gravel and sand with
little silt. Low resistivity values reflected the presence of clay layers, and increasing
salinity of water gradually with the depth. The aquifer occurs at minimum depth
The study area is located within the Hit area, western Iraq. The measurements of Graphical Bristow’s method were carried out by using Pole-dipole array, to delineate the anomaly of apparent resistivity caused by a known cavity target. The survey was applied along two traverses: traverse in W-E direction and traverse in S-N direction above Um El-Githoaa cavity. Data interpretation of the traverse trending W-E, with a-spacing equal to(2m)identified the anomaly of the cavity at a depth of (2.6m), (1.6m) height, and( 9.5m) width, while the actual dimensions of depth, height, and width were (3.80m),( 2.2m), and (12.30m) respectively, with variations of depth equal to (1.2m), high (0.8m), and width( 2.8m). The data interpretation with a-spac
... Show MoreThe resistivity survey was carried out by using vertical electrical sounding (VES) and 2D imaging techniques in the northern Badra area, Eastern Iraq. Eleven VES points distributed on two parallel profiles and six 2D imaging stations were applied using long survey lines.
In general, two types of aquifers are recognized in the study area. The first is the Quaternary aquifer, which appears in all geological sections and inverse model of 2D imaging stations (2DS).This aquifer can be divided into upper and lower aquifers as shown in (2DS1), (2DS3), and (2DS4). Generally, the thickness of this aquifer ranges between (30-200 m) which occurs at a depth of (10-30m) according to geological sections, while its thickness ranges between (35-180m)
Electrical resistivity methods are one of the powerful methods for the detection and evaluation of shallower geophysical properties. This method was carried out at Hit area, western Iraq, in two stages; the first stage involved the use of 1Dimensional Vertical Electrical Sounding (VES) technique in three stations using Schlumberger array with maximum current electrodes of 50m. The second stage included the employment of two dimension (2D) resistivity imaging technique using dipole-dipole array with a-spacing of 4m and n-factor of 6 in two stations. The 1D survey showed good results in delineating contaminated and clear zones that have high resistivity contrast. Near the main contaminated spring, the 2D resi
... Show MoreAn oil spillage has been a great threat to human life in parts of Koya district, especially through the contamination of domestic water. An attempt was made to find and map the extent of pollution in the area. According to a field survey, more than 17 springs and 34 hand-dug and artesian wells have been contaminated with crude oil. The contamination was recorded recently after loading began of tens of oil tankers in the Taq-Taq oil field, and as a result hundred barrels of oil have spilled into the creeks and soil daily. Hence, 2D resistivity imaging was adopted via four laid-out traverses running normal to the strike of the outcrops. A Wenner-Schlumberger array configuration was used to achieve both vertical and lateral resistivity dist
... Show More