Preferred Language
Articles
/
ijs-361
Theoretical Study of Density Distributions and Size Radii of 8B and 17Ne
...Show More Authors

     The proton, neutron and matter density distributions, the corresponding size radii and elastic electron scattering form factors of one-proton8B and two-proton 17Ne halo nuclei are calculated. The theoretical technique used to fulfill calculations is by assuming that both nuclei under study are composed of two main parts; the first is the compact core and the second is the unstable halo part. The single-particle radial wavefunctions of harmonic-oscillator (HO) and Woods-Saxon (WS) potentials are used to study core and halo parts, respectively. And other approach is studied by using HO potential for both core and halo parts, but using two HO size parameters for both supposed parts. The long tail behavior which is the main characteristic of halo nuclei are well produced for both 8B and 17Ne. The calculated size radii are in general in good agreement with the available experimental data. The electron scattering form factors of the C0+C2 and C0 components are also calculated for 8B and 17Ne, respectively and compared with corresponding stable 10B and 20Ne nuclei. For 8B calculations, the core-polarization (CP) effects are taken into account by using Tassie and Bohr-Mottelson models. The contribution from model-space (MS) part C2 component is taken through pwt interaction. The results of the calculated charge form factors are left for the planned electron-radioactive ion beam colliders where the study of skin or halo on the charge form factors are going to be studied.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Study of Density Distributions, Elastic Electron Scattering form factors and reaction cross sections of 9C, 12N and 23Al exotic nuclei
...Show More Authors

The ground state densities of unstable proton-rich 9C, 12N and 23Al exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv, where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. The long tail performance is clearly noticed in the calculated proton and matter density distributions of these nuclei. The structure of the valence proton in 9C and 12N is a pure (1p1/2) configuration while that for 23Al is

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 19F, 27Al and 25Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Charge density distributions and electron scattering form factors of 19F, 22Ne and 26Mg nuclei
...Show More Authors

An effective two-body density operator for point nucleon system folded with the
tenser force correlations ( TC's), is produced and used to derive an explicit form for
ground state two-body charge density distributions (2BCDD's) applicable for
19F,22Ne and 26Mg nuclei. It is found that the inclusion of the two-body TC's has the
feature of increasing the central part of the 2BCDD's significantly and reducing the
tail part of them slightly, i.e. it tends to increase the probability of transferring the
protons from the surface of the nucleus towards its centeral region and consequently
makes the nucleus to be more rigid than the case when there is no TC's and also
leads to decrease the
1/ 2
2 r of the nucleus. I

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Matter density distribution and longitudinal form factors for the ground and excited states of 17Ne exotic nucleus
...Show More Authors

The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Study of Matter Density Distributions, Elastic Electron Scattering form Factors and Reaction Cross Sections of 8He And 17B Exotic Nuclei
...Show More Authors

The ground state densities of unstable neutron-rich 8He and 17B exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. Shell model calculations for the two valence neutrons in 8He and 17B are performed via the computer code OXBASH. The long tail performance is clearly noticed in the calculated neutron and matter density distributions of these nucl

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 25Mg, 27Al and 29Si nuclei
...Show More Authors

An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Elastic Form Factors and Proton Momentum Distributions for Some fp- Shell Nuclei Using the Coherent Density Fluctuation Model
...Show More Authors

The ground state proton momentum distributions (PMD) and elastic charge form
factors for some odd 1f  2p shell nuclei, such as , , 59 63Co Cu and Cu 65 have been
studied using the Coherent Density Fluctuation Model and formulated by means of
the fluctuation function (weight function) ( ) .
2
f x The fluctuation function has been
connected to the charge density distribution of the nuclei and determined from the
theory and experiment result. The feature of the long-tail behavior at high
momentum region of the PMD has been calculated by both the theoretical and
experimental fluctuation functions. It is found that the inclusion of the quadrupole
form factors ( ) 2 F q C in all nuclei under study, which are de

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Study of the Density Distributions and Elastic form Factors of the Exotic Nuclei, 8He And 26F, Via the Three-Body Model
...Show More Authors

    The matter, proton, and neutron density distributions of the ground state, the nuclear root-mean-square (rms) radii, and the elastic form factors of a two- neutron, 8He and 26F, halo nuclei have been studied by the three body model of  within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeeds in reproducing the neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy (above several hundred MeV) has been used to calculate the rms radii and reaction cross sections of these nuclei.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Investigation of Ground Density Distributions and Charge Form Factors for 14,16,18,20,22N using Cosh Potential
...Show More Authors

     The bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Physics
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei
...Show More Authors

The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related  radii are investigated using the two-body model of   within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is  calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c

... Show More
View Publication Preview PDF
Crossref