Learning is the process of gaining knowledge and implementing this knowledge on behavior. The concept of learning is not strict to just human being, it expanded to include machine also. Now the machines can behave based on the gained knowledge learned from the environment. The learning process is evolving in both human and machine, to keep up with the technology in the world, the human learning evolved into micro-learning and the machine learning evolved to deep learning. In this paper, the evolution of learning is discussed as a formal survey accomplished with the foundation of machine learning and its evolved version of learning which is deep learning and micro-learning as a new learning technology can be implemented on human and machine learning. A procedural comparison is achieved to declare the purpose of this survey, also a related discussion integrates the aim of this study. Finally a concluded points are illustrated as outcome which summarized the practical evolution intervals of the machine learning different concepts.
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreCryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreThe study aims to identify the level of cognitive beliefs, as well as to identify the level of self-organized learning strategies among intermediate school students. The study also aims to identify the differences in the level of self-organized learning strategies among intermediate school students in term of gender, branch (scientific, literary). In order to achieve the research objectives, the researcher designed a scale to measure the cognitive beliefs. As for the scale of self-organized learning strategies, the researcher adopted a scale of (Pintrich et al. 1991), which was translated by (Izzat Abdelhamid, 1999) , For self-organized learning strategies, the sample consisted of (400) students from the research population, whic
... Show MoreWidespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show MoreThis is a survey study that presents recent researches concerning factional controllers. It presents several types of fractional order controllers, which are extensions to their integer order counterparts. The fractional order PID controller has a dominant importance, so thirty-one paper are presented for this controller. The remaining types of controllers are presented according to the number of papers that handle them; they are fractional order sliding mode controller (nine papers), fuzzy fractional order sliding mode controller (five papers), fractional order lag-lead compensator (three papers), fractional order state feedback controller (three papers), fractional order fuzzy logic controller (three papers). Finally, several conclusions
... Show MoreMarking content with descriptive terms that depict the image content is called “tagging,” which is a well-known method to organize content for future navigation, filtering, or searching. Manually tagging video or image content is a time-consuming and expensive process. Accordingly, the tags supplied by humans are often noisy, incomplete, subjective, and inadequate. Automatic Image Tagging can spontaneously assign semantic keywords according to the visual information of images, thereby allowing images to be retrieved, organized, and managed by tag. This paper presents a survey and analysis of the state-of-the-art approaches for the automatic tagging of video and image data. The analysis in this paper covered the publications
... Show MoreThis is a survey study that presents recent researches concerning factional controllers. It presents several types of fractional order controllers, which are extensions to their integer order counterparts. The fractional order PID controller has a dominant importance, so thirty-one paper are presented for this controller. The remaining types of controllers are presented according to the number of papers that handle them; they are fractional order sliding mode controller (nine papers), fuzzy fractional order sliding mode controller (five papers), fractional order lag-lead compensator (three papers), fractional order state feedback controller (three papers), fractional order fuzzy logic controller (three papers). Finally,
... Show MoreRadiation measuring devices need to process calibration which
lose their sensitivity and the extent of the response and the amount of
stability under a changing conditions from time to time and this
period depends on the nature and use of field in which used devices.
A comparison study was done to a (451P) (ionization chamber
survey meter) and this showed the variation of calibration factor in
five different years. This study also displayed the concept of
radiation instrument calibration and necessity of every year
calibration of them.
In this project we used the five years calibration data for ionization
chamber survey meter model Inspector (451P) to get that the values
of Calibration Factor (CF) and Res
In this review paper a number of studies and researches are surveyed, in order to assist the upcoming researchers, to know about the techniques available in the field of semantic based video retrieval. The video retrieval system is used for finding the users’ desired video among a huge number of available videos on the Internet or database. This paper gives a general discussion on the overall process of the semantic video retrieval phases. In addition to its present a generic review of techniques that has been proposed to solve the semantic gap as the major scientific problem in semantic based video retrieval. The semantic gap is formed because of the difference between the low level features that are extracted from video content and u
... Show MoreBrachycerous Dipteran species on alfalfa plant Medicago sativa surveyed in several regions of Iraq from March to November 2012. The study was registered 14 species belonging to nine genera and four families. The results showed that Limnophra quaterna, Atherigona laevigata and Atherigona theodori as new records to Iraq and new pests of alfalfa.