The rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy used to extend the life of the WSN and take successful routing decisions. For these reasons, designing an energy-efficient system that utilizes intelligent approaches is considered as the most powerful way to prolong the lifetime of the WSN. The proposed system is divided into four phases (sensor deployment phase, clustering phase, intra-cluster phase, and inter-cluster phase). Each of these phases uses a different intelligent algorithm with some enhancements. The performance of the proposed system was analyzed and evaluations were elaborated with well-known existing routing protocols. To assess the proficiency of the proposed system and evaluate the endurance of the network, efficiency parameters such as network lifetime, energy consumption, and packet delivery to the Sink (Base station) were exploited. The experimental outcomes justify that the proposed system surpasses the existing mechanisms by 50%.
Nonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem. Hence, in this paper, the BAT algorithm to estimate the parameters of Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.
The Internet of Things (IoT) is a network of devices used for interconnection and data transfer. There is a dramatic increase in IoT attacks due to the lack of security mechanisms. The security mechanisms can be enhanced through the analysis and classification of these attacks. The multi-class classification of IoT botnet attacks (IBA) applied here uses a high-dimensional data set. The high-dimensional data set is a challenge in the classification process due to the requirements of a high number of computational resources. Dimensionality reduction (DR) discards irrelevant information while retaining the imperative bits from this high-dimensional data set. The DR technique proposed here is a classifier-based fe
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i
... Show MoreThe purpose of this project is to build a scientific base and computational programs in an accelerator design work. The transfer of group of laws in alinear accelerator cavity to computer codes written in Fortran power station language is inorder to get a numerical calculation of an electromagnetic field generated in the cavities of the linear accelerator. The program in put contains mainly the following, the geometrical cavity constant, and the triangular finite element method high – order polynomial. The out put contains vertical and horizontal components of the electrical field together with the electrical and the magnetic field intensity.
For a given loading, the stiffness of a plate or shell structure can be increased significantly by the addition of ribs or stiffeners. Hitherto, the optimization techniques are mainly on the sizing of the ribs. The more important issue of identifying the optimum location of the ribs has received little attention. In this investigation, finite element analysis has been achieved for the determination of the optimum locations of the ribs for a given set of design constraints. In the conclusion, the author underlines the optimum positions of the ribs or stiffeners which give the best results.
Extractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datas
... Show MoreIn this paper the effects of the contact material on the photovoltaic (PV) characteristics of p-NiO:Au/n-Si solar cells fabricated by using the pulsed laser deposition (PLD) technique had been studied. It shown the p-NiO:Au/n-Si could be successfully used to construct and improve the performance of solar cells by using Au. The conversion efficiency was increased comparable with p-NiO/n-Si solar cells. In this case the NiO:Au layer acts as a hole collector as well as a barrier for charge recombination.
Wireless lietworking is· constantly improving, changing and
though ba ic principle is the same. ['nstead of using standard cables to transmit information fmm one point to another (qr more), it .uses radio signals. This paper presents .a case study considedng real-time remote
cqntroJ using Wireless UDP/JP-based networks,. The aim of-this werk is to
reduce real-time· remote control system based upon a simulatio.n model,
which can operate via general communication l"]etworks, whieh on bodies. modern wireles tcchnolqgy.
The first part includes· a brief
... Show More