Preferred Language
Articles
/
ijs-3425
The Dual Notion of St-Polyform Modules
...Show More Authors

The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism 𝑓:N M; ker𝑓 is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are considered such as copolyform, epiform, CSt-semisimple, -nonsingular modules, and some others will be introduced such as non CSt-singular and G. coquasi-Dedekind modules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF