Preferred Language
Articles
/
ijs-330
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering Form Factors of Some Proton Halo Nuclei (17Ne and 8B)
...Show More Authors

     Theoretical investigation of proton halo-nucleus (8B and 17Ne) has revealed that the valence protons are to be in pure (1p1/2)1 orbit for 8B and (1d3/2)2 orbit for 17Ne.  The nuclear matter density distributions, the elastic electron scattering form factors and (proton, charge, neutron and matter) root-mean square (rms) are studied for our tested nuclei, through an effective two-body density operator for point nucleon system folded with two-body full correlation operator's functions. The full correlation (FC's ) takes account of the effect for the strong short range repulsion (SRC's) and the strong tensor force (TC's) in the nucleon-nucleon forces. The effective two-body density operator is produced and used to derive an explicit form for ground state two-body nucleon density distributions (2BNDD's) applicable for proton – rich halo nuclei and Fortran 95 programs are utilized to obtain theoretical values of our calculation. The effect of the TC's and SRC's on the ground state also calculated. 2BNDD's obtained within the two- frequency shell model (TFSM) approach, the elastic charge scattering form factors F(q)'s of proton halo nuclei are studied through Plane Wave Born Approximation (PWBA) .

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 24 2021
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering form Factors for Some Halo Nuclei
...Show More Authors

The nuclear matter density distributions, elastic electron scattering charge form
factors and root-mean square (rms) proton, charge, neutron and matter radii are
studied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. The
local scale transformation (LST) are used to improve the performance radial wave
function of harmonic-oscillator wave function in order to generate the long tail
behavior appeared in matter density distribution at high . A good agreement results
are obtained for aforementioned quantities in the used model.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Density Distributions and Elastic Electron Scattering Form Factors of Proton-rich 8B, 17F, 17Ne, 23Al and 27P Nuclei
...Show More Authors

In this work, the nuclear density distributions, size radii and elastic electron scattering form factors are calculated for proton-rich 8B, 17F, 17Ne, 23Al and 27P nuclei using the radial wave functions of Woods-Saxon potential. The parameters of such potential for nuclei under study are generated so as to reproduce the experimentally available size radii and binding energies of the last nucleons on the Fermi surface.

View Publication Preview PDF
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Theoretical Study of Elastic Electron Scattering from 8B, 17Ne, 11Be and 11Li Halo Nuclei
...Show More Authors

     The nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Pramana
Matter density distributions and elastic form factors of some two-neutron halo nuclei
...Show More Authors

The Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.

View Publication
Scopus (14)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Proton momentum distributions and elastic electron scattering form factors for some Ge isotopes
...Show More Authors

The proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Matter Density Distributions, Root-mean Square Radii and Elastic Electron Scattering Form Factors of Some Exotic Nuclei (17B, 11Li, 8He)
...Show More Authors

The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B  nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for  11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Study of Density Distributions, Elastic Electron Scattering form factors and reaction cross sections of 9C, 12N and 23Al exotic nuclei
...Show More Authors

The ground state densities of unstable proton-rich 9C, 12N and 23Al exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv, where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. The long tail performance is clearly noticed in the calculated proton and matter density distributions of these nuclei. The structure of the valence proton in 9C and 12N is a pure (1p1/2) configuration while that for 23Al is

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Study of Matter Density Distributions, Elastic Electron Scattering form Factors and Reaction Cross Sections of 8He And 17B Exotic Nuclei
...Show More Authors

The ground state densities of unstable neutron-rich 8He and 17B exotic nuclei are studied via the framework of the two-frequency shell model (TFSM) and the binary cluster model (BCM). In TFSM, the single particle harmonic oscillator wave functions are used with two different oscillator size parameters βc and βv where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. In BCM, the internal densities of the clusters are described by single particle Gaussian wave functions. Shell model calculations for the two valence neutrons in 8He and 17B are performed via the computer code OXBASH. The long tail performance is clearly noticed in the calculated neutron and matter density distributions of these nucl

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Physics
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei
...Show More Authors

The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related  radii are investigated using the two-body model of   within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is  calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Nucleon momentum distributions and elastic electron scattering form factors for 48Ti and 54Fe nuclei
...Show More Authors

The nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele

... Show More
View Publication Preview PDF
Crossref