Preferred Language
Articles
/
ijs-3123
Splitting of PG(1,27) by Sets, Orbits, and Arcs on the Conic
...Show More Authors

This research aims to give a splitting structure of the projective line over the finite field of order twenty-seven that can be found depending on the factors of the line order. Also, the line was partitioned by orbits using the companion matrix. Finally, we showed the number of projectively inequivalent -arcs on the conic  through the standard frame of the plane PG(1,27)

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Complete (kn,n)-Arcs in The Projective Plane PG(2,11) by Geometric Method, with the Related Blocking Sets and Projective Codes
...Show More Authors

   In this paper,we construct complete (kn,n)-arcs in the projective plane PG(2,11),  n = 2,3,…,10,11  by geometric method, with the related blocking sets and projective codes.
 

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes
...Show More Authors

A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.

View Publication Preview PDF
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of (k,3)-Arcs in PG(2,9) by Using Geometrical Method
...Show More Authors

  In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic.         We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness

View Publication Preview PDF
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Minimal (b,t)-Blocking Sets Containing Conics in PG(2,5) with the Complete Arcs and Projective Codes Related with Them
...Show More Authors

A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.

View Publication Preview PDF
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Complete (k,r)-Caps From Orbits In PG(3,11)
...Show More Authors

      The purpose of this article is to partition PG(3,11) into orbits. These orbits are studied from the view of caps using the subgroups of PGL(4,11) which are determined by nontrivial positive divisors of the order of PG(3,11). The τ_i-distribution and c_i-distribution are also founded for each cap.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Maximum Complete (k,n)-Arcs in the Projective Plane PG(2,4) By Geometric Method
...Show More Authors

A (k,n)-arc A in a finite projective plane PG(2,q) over Galois field GF(q), q=pⁿ for same prime number p and some integer n≥2, is a set of k points, no n+1 of which are collinear.  A (k,n)-arc is complete if it is not contained in a(k+1,n)-arc.  In this paper, the maximum complete (k,n)-arcs, n=2,3 in PG(2,4) can be constructed from the equation of the conic.

View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Complete Arcs in Projective Plane PG (2,11) Over Galois field
...Show More Authors

    In this work, we construct complete (K, n)-arcs in the projective plane over Galois field GF (11), where 12 2 ≤ ≤ n  ,by using geometrical method (using the union of some maximum(k,2)- Arcs , we found (12,2)-arc, (19,3)-arc , (29,4)-arc, (38,5)-arc , (47,6)-arc, (58,7)-arc, (68,6)-arc, (81,9)-arc, (96,10)-arc, (109,11)-arc, (133,12)-arc, all of them are complete arc in PG(2, 11) over GF(11).  

View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
New sizes of complete (k, 4)-arcs in PG(2,17)
...Show More Authors

              In this paper, the packing problem for complete (  4)-arcs in  is partially solved. The minimum and the maximum sizes of complete (  4)-arcs in  are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in  and the algebraic characteristics of a plane quartic curve over the field  represented by the number of its rational points and inflexion points. In addition, some sizes of complete (  6)-arcs in the projective plane of order thirteen are established, namely for  = 53, 54, 55, 56.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Caps by Groups Action on the PG(3,8)
...Show More Authors

In this paper, the -caps are created by action of groups on the three-dimensional projective space over the Galois field of order eight. The types of -caps are also studied and determined either they form complete caps or not.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Sep 13 2023
Journal Name
Aip Conference Proceedings
Results for the (b,t)-blocking sets in PG(2,8)
...Show More Authors

View Publication
Scopus Crossref