The perturbed equation of motion can be solved by using many numerical methods. Most of these solutions were inaccurate; the fourth order Adams-Bashforth method is a good numerical integration method, which was used in this research to study the variation of orbital elements under atmospheric drag influence. A satellite in a Low Earth Orbit (LEO), with altitude form perigee = 200 km, was selected during 1300 revolutions (84.23 days) and ASat / MSat value of 5.1 m2/ 900 kg. The equations of converting state vectors into orbital elements were applied. Also, various orbital elements were evaluated and analyzed. The results showed that, for the semi-major axis, eccentricity and inclination have a secular falling discrepancy, Longitude of Ascending Node is periodic, Argument of Perigee has a secular increasing variation, while true anomaly grows linearly from 0 to 360°. Furthermore, all orbital elements, excluding Longitude of Ascending Node, Argument of Perigee, and true anomaly, were more affected by drag than other orbital elements, through their falling as the time passes. The results illustrate a high correlation as compared with literature reviews in this field.
In this paper, the satellite in low Earth orbit (LEO) with atmospheric drag perturbation have been studied, where Newton Raphson method to solve Kepler equation for elliptical orbit (i=63 , e = 0.1and 0.5, Ω =30 , ω =100 ) using a new modified model. Equation of motion solved using 4th order Rang Kutta method to determine the position and velocity component which were used to calculate new orbital elements after time step ) for heights (100, 200, 500 km) with (A/m) =0.00566 m2/kg. The results showed that all orbital elements are varies with time, where (a, e, ω, Ω) are increased while (i and M) are decreased its values during 100 rotations.The satellite will fall to earth faster at the lower height and width using big values for ecce
... Show MoreThe transition from low Earth orbit 200-1500 (km) to geostationary Earth orbit 42162 (km) was studied in this work by many methods of transfer. The delta-v requirement (Δv), the time of flight (Δt), the mass ratio of propellant consume (Δm/m) and total mass was calculated for many values altitude in the same plane also when the plane is change. The results from work show that (Δv) that required for transfer when the plane of orbit change is large than (Δv) required when the transfer in coplanar maneuvers while the bi-elliptical transfer method need time of transfer longer than a Hohmann transfer method. The most energy efficiency was determined when the transfer in coaxial between elliptical orbits
... Show MoreBackground/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo
... Show MoreIn this research, the eccentricity will be calculated as well as the best height of satellite orbit that can used to transfer from that orbit around the Earth to construct an interplanetary trajectory, for example Mars, when the transfer can be accomplished by a simple impulse, that means the transfer consists of an elliptical orbit from the inner orbit (at a perigee point) to the outer orbit (at apogee point). We will determine Keplerian equation to find the value of a mean anomaly(M) by Rung-Cutta method.
There are several types of satellites orbits around the Earth, but by this study, we find that the best stable orbit to the satellite that is used to inter its orbit around Mars is the Medium Earth Orbit (MEO) at a hei
... Show MoreThe main objective of this paper is to determine an acceptable value of eccentricity for the satellites in a Low Earth Orbit LEO that are affected by drag perturbation only. The method of converting the orbital elements into state vectors was presented. Perturbed equation of motion was numerically integrated using 4th order Runge-Kutta’s method and the perturbation in orbital elements for different altitudes and eccentricities were tested and analysed during 84.23 days. The results indicated to the value of semi major axis and eccentricity at altitude 200 km and eccentricity 0.001are more stable. As well, at altitude 600 km and eccentricity 0.01, but at 800 km a
In this paper, the Mars orbital elements were calculated. These orbital elements—the major axis, the inclination (i), the longitude of the ascending node (W), the argument of the perigee (w), and the eccentricity (e)—are essential to knowing the size and shape of Mars' orbit. The quick basic program was used to calculate the orbital elements and distance of Mars from the Earth from 25/5/1950 over 10000 days. These were calculated using the empirical formula of Meeus, which depended on the Julian date, which slightly changed for 10000 days; Kepler's equation was solved to find Mars' position and its distance from the Sun. The ecliptic and equatorial coordinates of Mars were calculated. The distance between Mars and the center of the E
... Show MoreComputer simulations were carried out to investigate the dependence of the main perturbation parameters (Sun and Moon attractions, solar radiation pressure, atmosphere drag, and geopotential of Earth) on the orbital behavior of satellite. In this simulation, the Cowell method for accelerations technique was adopted, the equation of motion with perturbation was solved by 4th order Runge-Kutta method with step (1/50000) of period to obtain the state vectors for position and velocity. The results of this simulation have been compared with data that available on TLEs (NORD data in two line elements). The results of state vectors for satellites (Cartosat-2B, Gsat-14 an
This research dealt with choosing the best satellite parking orbit and then the transition of the satellite from the low Earth orbit to the geosynchronous orbit (GEO). The aim of this research is to achieve this transition with the highest possible efficiency (lowest possible energy, time, and fuel consumption with highest accuracy) in the case of two different inclination orbits. This requires choosing a suitable primary parking orbit. All of the methods discussed in previous studies are based on two orbits at the same plane, mostly applying the circular orbit as an initial orbit. This transition required the use of the advanced technique of the Hohmann transfer method for the elliptical orbits, as we did in an earlier research, namely
... Show MoreThe major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
In this model, we use the C++ programming language to develop a program that calculates the atmospheric earth model from the surface to 250 kilometers. The balance forces theory is used to derive the pressure equation. The hydrostatic equation is utilized to calculate these parameters analytically. Variations of the parameters with altitude (density, pressure, temperature, and molecular weight) are investigated intensively. The equations for gravitational acceleration, sound speed, and scale height are also obtained. This model is used to investigate the effects of the earth's atmosphere on the space shuttle and the moving bodies inside it.