Preferred Language
Articles
/
ijs-2877
Quantifying Suicidal Ideation on Social Media using Machine Learning: A Critical Review
...Show More Authors

Suicidal ideation is one of the severe mental health issues and a serious social problem faced by our society. This problem has been usually dealt with through the psychological point of view, using clinical face to face settings. There are various risk factors associated with suicides, including social isolation, anxiety, depression, etc., that decrease the threshold for suicide. The COVID-19 pandemic further increases social isolation, posing a great threat to the human population. Posting suicidal thoughts on social media is gaining much attention due to the social stigma associated with the mental health. Online Social Networks (OSN) are increasingly used to express the suicidal thoughts. Recently, a top Indian actor industry took the harsh step of suicide. The last Instagram posts revealed signs of depression, which if anticipated could have saved the precious life. Recent research indicated that the public information on social media provides valuable insights on detecting the users with the suicidal ideation. The motive of this study is to provide a systematic review of the work done already in the use of social media for suicide prevention and propose a novel classification approach that classifies the suicide related tweets/ posts into three levels of distress. Moreover, our proposed classification task which was implemented through various machine learning techniques revealed high accuracy in classifying the suicidal posts. Among all algorithms, the best performing algorithm was that of the decision tree, with an F1 score ranging 0.95-0.97. After thoroughly studying the work achieved by different researchers in the area of suicide prevention, our study critically analyses those works and finds various research gaps and solves some of them. We believe that our work will motivate research community to look into other gaps that will in turn help psychiatrists, psychologists, and counsellors to protect individuals suffering from suicidal ideation.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Sentiment Analysis in Social Media using Machine Learning Techniques
...Show More Authors

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (12)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Elderly Healthcare System for Chronic Ailments using Machine Learning Techniques – a Review
...Show More Authors

     World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions.  This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Review of Smishing Detection Via Machine Learning
...Show More Authors

     Smishing is a cybercriminal attack targeting mobile Short Message Service (SMS) devices that contains a malicious link, phone number, or email. The attacker intends to use this message to steal the victim's sensitive information, such as passwords, bank account details, and credit cards. One method of combating smishing is to raise awareness and educate users about the various tactics used by SMS phishers. But even so, this method has been criticized for becoming inefficient because smishing tactics are continually evolving. A more promising anti-smishing method is to use machine learning. This paper introduces a number of machine learning algorithms that can be used for detecting smishing. Furthermore, the differences and simil

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accu

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Nasaq Journal
Social Media and Language Evolution: A Review of Current Theoretical Efforts on Communication and Language Change
...Show More Authors

This article is an endeavour to highlight the relationship between social media and language evolution. It reviews the current theoretical efforts on communication and language change. The descriptive design, which is theoretically based on technological determision, is used. The assumption behind this review is that the social media plays a significant role in language evolution. Moreover, different platforms of social media are characterized by being the easiest and fastest means of communication. It concludes that the current theoretical efforts have paid much attention to the relationship between social media and language evolution. Such efforts have highlighted the fact that social media platforms are awash with a lot of acronyms, cybe

... Show More
View Publication Preview PDF