Raw satellite images are considered high in resolution, especially multispectral images captured by remote sensing satellites. Hence, choosing the suitable compression technique for such images should be carefully considered, especially on-board small satellites, due to the limited resources. This paper presents an overview and classification of the major and state-of-the-art compression techniques utilized in most space missions launched during the last few decades, such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT)-based compression techniques. The pros and cons of the onboard compression methods are presented, giving their specifications and showing the differences among them to provide unified information about these methods for researchers and satellite imaging payload designers. Hence, some of these techniques are implemented, and comparisons are presented in the current work as examples to simulate an image compression system on board a small satellite using the MATLAB software package. This was achieved by employing three LANDSAT8, band6 satellite images. A wavelet selection was also considered for the DWT-based compression method, which gave the best results among the other methods through acquiring high values of compression ratio (CR) while maintaining the important scientific information of the image when reconstructed at the ground station.
Autonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.
This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and
... Show MoreMaxim Gorky’s Mother is one of the most important literary genre in social realism, in which he depicts female characters with revolutionary fervor and enthusiasm, projecting his social ideologies and dreams. Though the novel unique importance lies in the fact that it has been thoroughly analyzed by many writers, historians and sociologists, there are almost no studies devoted to the role of women out of a Marxist and feminist point of view. The present paper sheds light on the Russian woman‘s important role in overcoming all adversity and gain her position on Social Realism.
Одно из центральных мест сре
... Show MoreMagnetic Resonance Imaging (MRI) is a medical indicative test utilized for taking images of the tissue points of interest of the human body. During image acquisition, MRI images can be damaged by many noise signals such as impulse noise. One reason for this noise may be a sharp or sudden disturbance in the image signal. The removal of impulse noise is one of the real difficulties. As of late, numerous image de-noising methods were produced for removing the impulse noise from images. Comparative analysis of known and modern methods of median filter family is presented in this paper. These filters can be categorized as follows: Standard Median Filter; Adaptive Median Filter; Progressive Switching Median Filter; Noise Adaptive Fuz
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreEstimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling the Symmetric gray scale texture image and estimating by using
... Show MoreA global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets
... Show MoreDigital image started to including in various fields like, physics science, computer science, engineering science, chemistry science, biology science and medication science, to get from it some important information. But any images acquired by optical or electronic means is likely to be degraded by the sensing environment. In this paper, we will study and derive Iterative Tikhonov-Miller filter and Wiener filter by using criterion function. Then use the filters to restore the degraded image and show the Iterative Tikhonov-Miller filter has better performance when increasing the number of iteration To a certain limit then, the performs will be decrease. The performance of Iterative Tikhonov-Miller filter has better performance for less de
... Show MoreThis study has applied digital image processing on three-dimensional C.T. images to detect and diagnose kidney diseases. Medical images of different cases of kidney diseases were compared with those of healthy cases. Four different kidneys disorders, such as stones, tumors (cancer), cysts, and renal fibrosis were considered in additional to healthy tissues. This method helps in differentiating between the healthy and diseased kidney tissues. It can detect tumors in its very early stages, before they grow large enough to be seen by the human eye. The method used for segmentation and texture analysis was the k-means with co-occurrence matrix. The k-means separates the healthy classes and the tumor classes, and the affected
... Show More