Data mining is one of the most popular analysis methods in medical research. It involves finding patterns and correlations in previously unknown datasets. Data mining encompasses various areas of biomedical research, including data collection, clinical decision support, illness or safety monitoring, public health, and inquiry research. Health analytics frequently uses computational methods for data mining, such as clustering, classification, and regression. Studies of large numbers of diverse heterogeneous documents, including biological and electronic information, provided extensive material to medical and health studies.
Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreThis research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreThis review explores the Knowledge Discovery Database (KDD) approach, which supports the bioinformatics domain to progress efficiently, and illustrate their relationship with data mining. Thus, it is important to extract advantages of Data Mining (DM) strategy management such as effectively stressing its role in cost control, which is the principle of competitive intelligence, and the role of it in information management. As well as, its ability to discover hidden knowledge. However, there are many challenges such as inaccurate, hand-written data, and analyzing a large amount of variant information for extracting useful knowledge by using DM strategies. These strategies are successfully applied in several applications as data wa
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreGetting knowledge from raw data has delivered beneficial information in several domains. The prevalent utilizing of social media produced extraordinary quantities of social information. Simply, social media delivers an available podium for employers for sharing information. Data Mining has ability to present applicable designs that can be useful for employers, commercial, and customers. Data of social media are strident, massive, formless, and dynamic in the natural case, so modern encounters grow. Investigation methods of data mining utilized via social networks is the purpose of the study, accepting investigation plans on the basis of criteria, and by selecting a number of papers to serve as the foundation for this arti
... Show MoreCloud computing is an interesting technology that allows customers to have convenient, on-demand network connectivity based on their needs with minimal maintenance and contact between cloud providers. The issue of security has arisen as a serious concern, particularly in the case of cloud computing, where data is stored and accessible via the Internet from a third-party storage system. It is critical to ensure that data is only accessible to the appropriate individuals and that it is not stored in third-party locations. Because third-party services frequently make backup copies of uploaded data for security reasons, removing the data the owner submits does not guarantee the removal of the data from the cloud. Cloud data storag
... Show MorePsychological research centers help indirectly contact professionals from the fields of human life, job environment, family life, and psychological infrastructure for psychiatric patients. This research aims to detect job apathy patterns from the behavior of employee groups in the University of Baghdad and the Iraqi Ministry of Higher Education and Scientific Research. This investigation presents an approach using data mining techniques to acquire new knowledge and differs from statistical studies in terms of supporting the researchers’ evolving needs. These techniques manipulate redundant or irrelevant attributes to discover interesting patterns. The principal issue identifies several important and affective questions taken from
... Show MoreEven though image retrieval is considered as one of the most important research areas in the last two decades, there is still room for improvement since it is still not satisfying for many users. Two of the major problems which need to be improved are the accuracy and the speed of the image retrieval system, in order to achieve user satisfaction and also to make the image retrieval system suitable for all platforms. In this work, the proposed retrieval system uses features with spatial information to analyze the visual content of the image. Then, the feature extraction process is followed by applying the fuzzy c-means (FCM) clustering algorithm to reduce the search space and speed up the retrieval process. The experimental results show t
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show More