Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Trafï¬c monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time processing is very critical to keep the appropriate functionality of automated or continuously working systems. VD in road traffics has numerous applications in the transportation engineering field. In this review, different automated VD systems have been surveyed, with a focus on systems where the rectilinear stationary camera is positioned above intersections in the road rather than being mounted on the vehicle. Generally, three steps are utilized to acquire traffic condition information, including background subtraction (BS), vehicle detection and vehicle counting. First, we illustrate the concept of vehicle detection and discuss background subtraction for acquiring only moving objects. Then a variety of algorithms and techniques developed to detect vehicles are discussed beside illustrating their advantages and limitations. Finally, some limitations shared between the systems are demonstrated, such as the definition of ROI, focusing on only one aspect of detection, and the variation of accuracy with quality of videos. At the point when one can detect and classify vehicles, then it is probable to more improve the flow of the traffic and even give enormous information that can be valuable for many applications in the future.
This paper deals with finding an approximate solution to the index-2 time-varying linear differential algebraic control system based on the theory of variational formulation. The solution of index-2 time-varying differential algebraic equations (DAEs) is the critical point of the equivalent variational formulation. In addition, the variational problem is transformed from the indirect into direct method by using a generalized Ritz bases approach. The approximate solution is found by solving an explicit linear algebraic equation, which makes the proposed technique reliable and efficient for many physical problems. From the numerical results, it can be implied that very good efficiency, accuracy, and simplicity of the pre
... Show MoreSecond language learner may commit many mistakes in the process of second language learning. Throughout the Error Analysis Theory, the present study discusses the problems faced by second language learners whose Kurdish is their native language. At the very stages of language learning, second language learners will recognize the errors committed, yet they would not identify the type, the stage and error type shift in the process of language learning. Depending on their educational background of English as basic module, English department students at the university stage would make phonological, morphological, syntactic, semantic and lexical as well as speech errors. The main cause behind such errors goes back to the cultural differences
... Show MoreThe goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge
... Show MoreIn this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show MoreMunicipal wastewater sources are becoming increasingly important for reuse, for irrigation purposes, so they must be treated to meet environmentally friendly local or global standards. The aim of this study is to establish, calibrate, and validate a model for predicting chemical oxygen demand for the pilot plant of mobile biofilm reactors operating from municipal wastewater in Maaymyrh located in Hilla city Using the approach of dimensional analysis. The approach of Buckingham's theorem was used to derive a model of dimensional analysis design for the forecast of (COD) in the pilot plant. The effluent concentration (COD) It has been derived as a result of the influential concentration of (COD), dissolved oxygen (DO), volume of pilot plant
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
ABSTRACT this paper extends the literature on the elements and effect of financial literacy by investigating the elements of financial literacy and the impact of financial literacy on financial inclusion and savings. This research confirms the results of researches of other economies but exposes some dissimilarities as well. The principal factors of financial literacy are discovered to be government efficiency, educational level, income, economic performance and infrastructure. Both education levels and financial literacy are found to be meaningfully and positively linked to financial inclusion and savings in G20 economies
Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show MoreMany fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.
Co(II) ion was determined by a new, accurate, sensitive and rapid method via a
continuous flow injection analysis (CFIA) with a chemiluminescence reaction based on
the oxidation of Luminol which is loaded on poly acrylic acid gel beads by hydrogen
peroxide in presence of Cobalt (II) ion as a chemiluminescence catalyst. Chemical and
physical parameters were investigated to obtain the best conditions. Linear dynamic
range of Cobalt (II) ion was from 0.1-20.0 μg.ml-1 with a correlation coefficient r =
0.9758, limit of detection (L.O.D) 0.2 ng/sample from the step wise dilution of lowest
concentration in the calibration graph with the percentage relative standard deviation for
3 μg.ml-1 Co(ll) solution is 0.8537% (n