Preferred Language
Articles
/
ijs-2272
Absolutely Self Neat Modules
...Show More Authors

An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Max-Modules
...Show More Authors

   In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M;       In other words, M is a Max– module iff (0) is a *- submodule, where  a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly.       In this paper, some properties and characterizations of max– modules and  *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.

... Show More
View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiprime Fuzzy Modules
...Show More Authors

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Publication Date
Thu Oct 16 2014
Journal Name
Journal Of Advances In Mathematics
Strongly Rickart Modules
...Show More Authors

View Publication Preview PDF
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annsemimaximal and Coannsemimaximal Modules
...Show More Authors

        Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.

View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
On Primary Multipliction Modules
...Show More Authors

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

View Publication Preview PDF
Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Strongly Hollow R - Annihilator Lifting Modules and Strongly R - Annihilator (Hollow- Lifting) Modules
...Show More Authors

Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if  (denoted by K  F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with  hollow, there exists a fully invariant direct summand K of W such that K  F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with   R - a - hollow, there exists a fully invariant direct summand K o

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
2-Prime Modules
...Show More Authors

      In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Min (Max)-CS Modules
...Show More Authors

 In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.

View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Strongly Cancellation Modules
...Show More Authors

Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.

View Publication Preview PDF
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely Goldie Extending Modules
...Show More Authors

An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module     is Goldie extending if, for each submodule      of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module  is purely Goldie extending if, for each , there is a pure submodule P of such that  . Many c

... Show More
View Publication Preview PDF