Preferred Language
Articles
/
ijs-2266
A New Bayesian Group Bridge to Solve the Tobit Model

In this paper, we propose a new approach of regularization for the left censored data (Tobit). Specifically, we propose a new Bayesian group Bridge for left-censored regression ( BGBRLC). We developed a new Bayesian hierarchical model and we suggest a new Gibbs sampler for posterior sampling. The results show that the new approach performs very well compared to some existing approaches.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Tobit Quantile Regression Model Using Four Level Prior Distributions

Abstract:

      In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Tobit Quantile Regression Model Using Double Adaptive elastic net and Adaptive Ridge Regression

     Recently Tobit  Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique  and Bayesian hierarchical model with adaptive ridge regression technique .

 in double adaptive elastic net technique we assume  different penalization parameters  for penalization different regression coefficients in both parameters λ1and  λ, also in adaptive ridge regression technique we assume different  penalization parameters for penalization different regression coefficients i

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Bayesian Adaptive Bridge Regression for Ordinal Models with an Application

In this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
A New Hybrid Meta-Heuristics Algorithms to Solve APP Problems
Abstract<p>In this paper, a new hybrid algorithm for linear programming model based on Aggregate production planning problems is proposed. The new hybrid algorithm of a simulated annealing (SA) and particle swarm optimization (PSO) algorithms. PSO algorithm employed for a good balance between exploration and exploitation in SA in order to be effective and efficient (speed and quality) for solving linear programming model. Finding results show that the proposed approach is achieving within a reasonable computational time comparing with PSO and SA algorithms.</p>
Scopus (5)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Swarm Intelligence Research
A New Strategy Based on GSABAT to Solve Single Objective Optimization Problem

This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f

... Show More
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Mean Latin Hypercube Runge-Kutta Method to Solve the Influenza Model

     In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919  for a previous study. The comparison between the numerical and numerical simulation res

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach of Morgan-Voyce Polynomial to Solve Three Point Boundary Value Problems

In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Bridge Regression Model Estimating via Simulation

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 15 2022
Journal Name
Engineering, Technology &amp; Applied Science Research
Numerical Modeling of a Pile Group Subjected to Seismic Loading Using the Hypoplasticity Model

Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is

... Show More
Crossref (2)
Crossref
View Publication