In this paper, we have examined the influence of heat- transfer on the magnetohydrodynamics oscillatory flow of Williamson fluid during porous medium for two types of geometries "Poiseuille flow and Couette flow". We use perturbation technique in terms of the Weissenberg number to obtain explicit forms for velocity profiles. The results that obtained are illustrated by graphs.
The aim of this research is to study the effect of heat transfer on the oscillating flow of the hydrodynamics magnetizing Eyring-Powell fluid through a porous medium under the influence of temperature and concentration for two types of engineering conditions "Poiseuille flow and Couette flow". We used the perturbation method to obtain a clear formula for fluid motion. The results obtained are illustrated by graphs.
This paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number. 
... Show MoreThis paper concerns the peristaltic flow of a Williamson fluid with variable viscosity model through porous medium under combined effects of MHD and wall properties. The assumptions of Reynolds number and long wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series in terms of the Weissenberg number (We <1) was used to obtain explicit forms for velocity field and stream function. The effects of thermal conductivity, Grashof number, Darcy number, magnet, rigidity, stiffness of the wall and viscous damping force parameters on velocity and stream function have been studied.
The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.
The aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os
... Show MoreThe purpose of this study is to investigate the effect of an elastic wall on the peristaltic flow of Williamson fluid between two concentric cylinders, where the inner tube is cylindrical with an inelastic wall and the outer wall is a regular elastic sine wave. For this problem, cylindrical coordinates are used with a short wavelength relative to channel width for its length, as well as the governing equations of Williamson fluid in the Navier-Stokes equations. The results evaluated using the Mathematica software program. The Mathematica program used by entering the various data for the parameters, where the program shows the graphs, then the effect of these parameters became clear and the results mentioned in the conclusion. Williamso
... Show MoreThe goal of this study is to investigate the effects of heat transfer on a non-uniform inclined asymmetrical channel with couple stress fluids via a porous medium using incline magnetohydrodynamics. The governing equation is studied while using low Reynolds approximations and long-wavelength assumptions. Mathematical expressions for (pressure gradient), (temperature), (axial velocity), (heat temperature coefficient), and (stream function). A precise set of values for the various parameters in the present model has been used. The mathematical expressions for axial velocity, stream function, pressure gradient, and pressure rise per wavelength have been derived analytically. "MATHEMATICA" is used to present the computational result
... Show More"This paper presents a study of inclined magnetic field on the unsteady rotating flow of a generalized Maxwell fluid with fractional derivative between two inclined infinite circular cylinders through a porous medium. The analytic solutions for velocity field and shear stress are derived by using the Laplace transform and finite Hankel transform in terms of the generalized G functions. The effect of the physical parameters of the problem on the velocity field is discussed and illustrated graphically.
In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equatio
This paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.