This paper focuses on developing a strategy to represent the -connected ominoes using an abacus. We use the idea of -connected ominoes with respect to a frame in modelling nested chain abacus. Then, we formulate and prove the unique connected partition for any -connected ominoes. Next, the topological structure of nested chain abacus is presented.
This study had succeeded in producing a new graphical representation of James abacus called nested chain abacus. Nested chain abacus provides a unique mathematical expression to encode each tile (image) using a partition theory where each form or shape of tile will be associated with exactly one partition.Furthermore, an algorithm of nested chain abacus movement will be constructed, which can be applied in tiling theory.
The main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
Polymorphisms in the genes of G-protein subunit beta 3 (GNB3); rs5443, tryptophan hydroxylase 1 (TPH1); rs211105 and rs4537731, tryptophan hydroxylase 2 (TPH2); rs4570625 and sodium voltage-gated channel alpha subunit 5 (SCN5A); rs1805124, have known to cause the abnormalities in the gastrointestinal tract that are implicated to irritable bowel syndrome (IBS) predisposition. Upfront genetic polymorphism genotyping in IBS-related gene polymorphisms will help to intervene and guide the decision-making in the management of IBS patients. This study aimed to develop a genotyping method to detect the respective polymorphisms using nested allele-specific multiplex polymerase chain reaction (NASM-PCR). A combi
... Show MoreIn this work, there will be upgraded on the work of (Mahmood and Mahmood , 2018) by finding a general rule of the code for any text made from any number of words by using James e-Abacus Diagram in partition theory
This experiment may be applied before with certain and special roles, but never applied under partition theory (Abacus James Diagram) conditions. Therefore, we would have to find an appropriate design for each character to enable us sending a word represented as increasing number with meaning only for beneficiaries.
In our normal life, we sometimes need a process of replacing something with another to get out of the stereotype. From this point of view, Mahmood’s attempted in the year 2020 to replace the content in the first main e-abacus diagram. He found the general rule for finding the value of the new partition after the replacement from the original partition. Here we raise the question: Can we find the appropriate mechanisms for the remainder of the main e-abacus diagram?
We will provide a new method in this study that integrates two types of applications, namely Graph Theory and Conjugate Young Diagram, the idea of combining the graph and the Young diagram is presented by Ali And Mahmood, which is primarily based on the idea of the e-abacus diagram, the new method is called GCYD, it directly applies to the English letter section, which will be a two-layer coding. It makes it difficult to detect the word or sentence.
In the partition theory, there is more then one form of representation of dedication, most notably the Abacus diagram, which gives an accurate and specific description. In the year 2019, Mahmood and Mahmood presented the idea of merging more than two plans, and then the following question was raised: Is the process of separating any somewhat large diagram into smaller schemes possible? The general formula to split e-abacus diagram into two or more equal or unequal parts was achieved in this study now.
Let
be a dynamical system,
is said to be topological transitive if for every pair of non-empty open set
, there exists
such that
. We introduce and investigate a new definition of topological transitive by using the nation N-open subset and we called N-transitive and prove the equivalent definitions of this new definition.
In this paper, we show that each soft topological group is a strong small soft loop transfer space at the identity element. This indicates that the soft quasitopological fundamental group of a soft connected and locally soft path connected space, is a soft topological group.