The aim of this research is to use the class of soft simply open set to define new types of separation axioms in soft topological spaces. We also introduce and study the concept of soft simply compactness.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
The purpose of this paper is to study a new types of compactness in bitopological spaces. We shall introduce the concepts of L- compactness.
In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
The main purpose of this article is to study the soft LC-spaces as soft spaces in which every soft Lindelöf subset of is soft closed. Also, we study the weak forms of soft LC-spaces and we discussed their relationships with soft LC-spaces as well as among themselves.
In this paper, we procure the notions of neutrosophic simply b-open set, neutrosophic simply b-open cover, and neutrosophic simply b-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply
b-compactness. Further, we furnish some counter examples where the result fails.
In this work, we present new types of compact and Lindelöf spaces and some facts and results related to them. There are also types of compact and Lindelöf functions and the relationship between them has been investigated. Further, we have present some properties and results related to them.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.